
Hindawi Publishing Corporation
EURASIP Journal on Information Security
Volume 2007, Article ID 78943, 20 pages
doi:10.1155/2007/78943

Review Article
Protection and Retrieval of Encrypted Multimedia Content:
When Cryptography Meets Signal Processing

Zekeriya Erkin,1 Alessandro Piva,2 Stefan Katzenbeisser,3 R. L. Lagendijk,1 Jamshid Shokrollahi,4

Gregory Neven,5 and Mauro Barni6

1 Electrical Engineering, Mathematics, and Computer Science Faculty, Delft University of Technology,
2628 CD, Delft, The Netherlands

2 Department of Electronics and Telecommunication, University of Florence, 50139 Florence, Italy
3 Information and System Security Group, Philips Research Europe, 5656 AE, Eindhoven, The Netherlands
4 Department of Electrical Engineering and Information Sciences, Ruhr-University Bochum, 44780 Bochum, Germany
5 Department of Electrical Engineering, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
6 Department of Information Engineering, University of Siena, 53100 Siena, Italy

Correspondence should be addressed to Zekeriya Erkin, z.erkin@tudelft.nl

Received 3 October 2007; Revised 19 December 2007; Accepted 30 December 2007

Recommended by Fernando Pérez-González
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the study discusses the challenges and open issues in the field of secure signal processing.
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1. INTRODUCTION

In the past few years,the processing of encrypted signals has
emerged as a new and challenging research field. The combi-
nation of cryptographic techniques and signal processing is
not new. So far, encryption was always considered as an add-
on after signal manipulations had taken place (see Figure 1).
For instance, when encrypting compressed multimedia sig-
nals such as audio, images, and video, first the multime-
dia signals were compressed using state-of-the-art compres-
sion techniques, and next encryption of the compressed bit
stream using a symmetric cryptosystem took place. Conse-
quently, the bit stream must be decrypted before the multi-
media signal can be decompressed. An example of this ap-
proach is JPSEC, the extension of the JPEG2000 image com-
pression standard. This standard adds selective encryption
to JPEG2000 bit streams in order to provide secure scalable
streaming and secure transcoding [1].

In several application scenarios, however, it is desirable to
carry out signal processing operations directly on encrypted
signals. Such an approach is called secure signal processing, en-
crypted signal processing, or signal processing in the encrypted
domain. For instance, given an encrypted image, can we cal-
culate the mean value of the encrypted image pixels? On the
one hand, the relevance of carrying out such signal manipu-
lations, that is, the algorithm, directly on encrypted signals is
entirely dependent on the security requirements of the appli-
cation scenario under consideration. On the other hand, the
particular implementation of the signal processing algorithm
will be determined strongly by the possibilities and impossi-
bilities of the cryptosystem employed. Finally, it is very likely
that new requirements for cryptosystems will emerge from
secure signal processing operations and applications. Hence,
secure signal processing poses a joint challenge for both the
signal processing and the cryptographic community.
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Figure 1: Separate processing and encryption of signals.

The security requirements of signal processing in en-
crypted domains depends strongly on the considered appli-
cation. In this survey paper, we take an application-oriented
view on secure signal processing and give an overview of pub-
lished applications in which the secure processing of signal
amplitudes plays an important role. In each application, we
show how signal processing algorithms and cryptosystems
are brought together. It is not the purpose of the paper to
describe either the signal processing algorithms or the cryp-
tosystems in great detail, but rather focus on possibilities, im-
possibilities, and open issues in combining the two. The pa-
per includes many references to literature that contains more
elaborate signal processing algorithms and cryptosystem so-
lutions for the given application scenario. It is also crucial
to state that the scenarios in this survey can be implemented
more efficiently by using trusted third entities. However, it is
not always easy to find trusted entities with high computa-
tional power, and even if one is found, it is not certain that
it can be applicable in these scenarios. Therefore, the trusted
entities either do not exist or have little role in discussed sce-
narios in this paper.

In this paper, we will survey applications that directly ma-
nipulate encrypted signals. When scanning the literature on
secure signal processing, it becomes immediately clear that
there are currently two categories under which the secure sig-
nal processing applications and research can be roughly clas-
sified, namely, content retrieval and content protection. Al-
though the security objectives of these application categories
differ quite strongly, similar signal processing considerations
and cryptographic approaches show up. The common cryp-
tographic primitives are addressed in Section 2. This section
also discusses the need for clearly identifying the security re-
quirements of the signal processing operations in a given sce-
nario. As we will see, many of the approaches for secure sig-
nal processing are based on homomorphic encryption, zero-
knowledge proof protocols, commitment schemes, and mul-
tiparty computation. We will also show that there is ample
room for alternative approaches to secure signal processing
towards the end of Section 2. Section 3 surveys secure sig-
nal processing approaches that can be classified as “content
retrieval,” among them secure clustering and recommenda-
tion problems. Section 4 discusses problems of content pro-
tection, such as secure watermark embedding and detection.
Finally, Section 5 concludes this survey paper on secure pro-
tection and retrieval of encrypted multimedia content.

2. ENCRYPTION MEETS SIGNAL PROCESSING

2.1. Introduction

The capability to manipulate signals in their encrypted form
is largely thanks to two assumptions on the encryption
strategies used in all applications discussed. In the first place,

encryption is carried out independently on individual signal
samples. As a consequence, individual signal samples can be
identified in the encrypted version of the signal, allowing for
processing of encrypted signals on a sample-by-sample basis.
If we represent a one-dimensional (e.g., audio) signal X that
consists of M samples as

X = [x1, x2, x3, . . . , xM−1, xM
]T

, (1)

where xi is the amplitude of the ith signal sample, then the
encrypted version of X using key k is given as

Ek(X) = [Ek(x1
)
,Ek
(
x2
)
,Ek
(
x3
)
, . . . ,Ek

(
xM−1

)
,Ek
(
xM
)]T

.
(2)

Here the superscript “T” refers to vector transposition. Note
that no explicit measures are taken to hide the temporal or
spatial structure of the signal, however, the use of sophisti-
cated encryption schemes that are semantically secure (as the
one in [2]) achieves this property automatically.

Secondly, only public key cryptosystems are used that
have particular homomorphic properties. The homomorphic
property that these public key cryptographic system provide
will be concisely discussed in Section 2.2.1. In simple terms,
the homomorphic property allows for carrying out additions
or multiplications on signal amplitudes in the encrypted do-
main. Public key systems are based on the intractability of
some computationally complex problems, such as

(i) the discrete logarithm in finite field with a large
(prime) number of elements (e.g., ElGamal cryptosys-
tem [3]);

(ii) factoring large composite numbers (e.g., RSA cryp-
tosystem [4]);

(iii) deciding if a number is an nth power in ZN for large
enough composite N (e.g., Paillier cryptosystem [2]).

It is important to realize that public key cryptographic sys-
tems operate on very large algebraic structures. This means
that signal amplitudes xi that were originally represented in
8-to-16 bits will require at least 512 or 1024 bits per signal
sample in their encrypted form Ek(xi). This data expansion
is usually not emphasized in literature but this may be an
important hurdle for practical applicability of secure signal
processing solutions. In some cases, however, several signal
samples can be packed into one encrypted value in order to
reduce the size of the whole encrypted signal by a linear fac-
tor [5].

A characteristic of signal amplitudes xi is that they are
usually within a limited range of values, due to the 8-to-16
bits amplitude representation format of sampled signals. If
a deterministic encryption scheme would be used, each sig-
nal amplitude would always give rise to the same encrypted
value, making it easy for an adversary to infer information
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Table 1: Some (probabilistic) encryption systems and their homomorphisms.

Encryption system f1(·, ·) f2(·, ·)
Multiplicatively Homomorphic El-Gamal [3] Multiplication Multiplication

Additively Homomorphic El-Gamal [13] Addition Multiplication

Goldwasser-Micali [14] XOR Multiplication

Benaloh [15] Addition Multiplication

Naccache-Stern [16] Addition Multiplication

Okamoto-Uchiyama [17] Addition Multiplication

Paillier [2] Addition Multiplication

Damgård-Jurik [18] Addition Multiplication

about the signal. Consequently, probabilistic encryption has
to be used, where each encryption uses a randomization or
blinding factor such that even if two signal samples xi and xj
have the same amplitude, their encrypted values Epk[xi] and
Epk[xj] will be different. Here, pk refers to the public key used
upon encrypting the signal amplitudes. Public key cryptosys-
tems are constructed such that the decryption uses only the
private key sk, and that decryption does not need the value
of the randomization factor used in the encryption phase. All
encryption schemes that achieve the desired strong notion of
semantic security are necessarily probabilistic.

Cryptosystems operate on (positive) integer values on
finite algebraic structures. Although sampled signal ampli-
tudes are normally represented in 8-to-16 bits (integer) val-
ues when they are stored, played, or displayed, intermediate
signal processing operations often involve noninteger signal
amplitudes. Work-arounds for noninteger signal amplitudes
may involve scaling signal amplitudes with constant factors
(say factors of 10 to 1000), but the unavoidable successive
operations of rounding (quantization) and normalization by
division pose significant challenges for being carried out on
encrypted signal amplitudes.

In Section 2.2, we first discuss four important cryp-
tographic primitives that are used in many secure signal
processing applications, namely, homomorphic encryption,
zero-knowledge proof protocols, commitment schemes, and
secure multiparty computation. In Section 2.3, we then con-
sider the importance of scrutinizing the security require-
ments of the signal processing application. It is meaningless
to speak about secure signal processing in a particular ap-
plication if the security requirements are not specified. The
security requirements as such will also determine the possi-
bility or impossibility of applying the cryptographic prim-
itives. As we will illustrate by examples—and also in more
detail in the following sections—some application scenarios
simply cannot be made secure because of the inherent infor-
mation leakage by the signal processing operation because of
the limitations of the cryptographic primitives to be used,
or because of constraints on the number of interactions be-
tween parties involved. Finally, in Section 2.4, we briefly dis-
cuss the combination of signal encryption and compression
using an approach quite different from the ones discussed in
Sections 3 and 4, namely, by exploiting the concept of coding
with side information. We discuss this approach here to em-
phasize that although many of the currently existing applica-

tion scenarios are built on the four cryptographic primitives
discussed in Section 2.2, there is ample room for entirely dif-
ferent approaches to secure signal processing.

2.2. Cryptographic primitives

2.2.1. Homomorphic cryptosystems

Many signal processing operations are linear in nature. Lin-
earity implies that multiplying and adding signal amplitudes
are important operations. At the heart of many signal pro-
cessing operations, such as linear filters and correlation eval-
uations, is the calculation of the inner product between two
signals X and Y. If both signals (or segments of the signals)
contain M samples, then the inner product is defined as

〈X, Y〉 = XTY = [x1, x2, . . . , xM
] ·
⎡⎢⎢⎢⎢⎣
y1

y2
...
yM

⎤⎥⎥⎥⎥⎦ =
M∑
i=1

xi yi. (3)

This operation can be carried out directly on an encrypted
signal X and plain text signal Y if the encryption system used
has the additive homomorphic property, as we will discuss
next.

Formally, a “public key” encryption system Epk(·) and its
decryption Dsk(·) are homomorphic if those two functions
are maps between the message group with an operation f1(·)
and the encrypted group with an operation f2(·), such that
if x and y are taken from the message space of the encryption
scheme, we have

f1(x, y) = Dsk
(
f2
(
Epk(x),Epk(y)

))
. (4)

For secure signal processing, multiplicative and additive ho-
momorphisms are important. Table 1 gives an overview of
encryption systems with additive or multiplicative homo-
morphism. Note that those homomorphic operations are ap-
plied to a modular domain (i.e., either in a finite field or in a
ring ZN )—thus, both addition and multiplication are taken
modulo some fixed value. For signal processing applications,
which usually require integer addition and multiplication, it
is thus essential to choose the message space of the encryp-
tion scheme large enough so that overflows due to modular
arithmetic are avoided when operations on encrypted data
are performed.
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Another important consideration is the representation of
the individual signal samples. As encryption schemes usually
operate in finite modular domains (and all messages to be
encrypted must be represented in this domain), a mapping is
required which quantizes real-valued signal amplitudes and
translates the signal samples of X into a vector of modular
numbers. In addition to the requirement that the computa-
tions must not overflow, special care must be taken to repre-
sent negative samples in a way which is compatible with the
homomorphic operation offered by the cryptosystem. For
the latter problem, depending on the algebraic structure of
the cipher, one may either encode the negative value −x by
the modular inverse x−1 in the underlying algebra of the mes-
sage space or by avoiding negative numbers entirely by using
a constant additive shift.

In the context of the above inner product example, we
require an additively homomorphic scheme (see Table 1).
Hence, f1 is the addition, and f2 is a multiplication:

x + y = Dsk
(
Epk(x) · Epk(y)

)
, (5)

or, equivalently,

Epk(x + y) = Epk(x) · Epk(y). (6)

Note that the latter equation also implies that

Epk(c · x) = (Epk(x)
)c

(7)

for every integer constant c. Thus, every additively homo-
morphic cryptosystem also allows to multiply an encrypted
value with a constant available or known as clear text.

The Paillier cryptosystem [2] provides the required ho-
momorphism if both addition and multiplication are con-
sidered as modular. The encryption of a message m under a
Paillier cryptosystem is defined as

Epk(m) = gmrN mod N2, (8)

where N = pq, p and q are large prime number, g ∈ Z∗N2 is
a generator whose order is a multiple of N , and r ∈ Z∗N is a
random number (blinding factor). We then easily see that

Epk(x)Epk(y) = (gxrNx )(g yrNy ) mod N2

= gx+y
(
rxry

)N
mod N2

= Epk(x + y).

(9)

Applying the additive homomorphic property of the Paillier
encryption system, we can evaluate (3) under the assumption
that X is an encrypted signal and Y is a plain text signal:

Epk〈X, Y〉 = Epk

( M∑
i=1

xi yi

)
=

M∏
i=1

Epk
(
xi yi

) = M∏
i=1

Epk
(
xi
)yi .

(10)

Here, we implicitly assume that xi, yi are represented as inte-
gers in the message space of the Paillier cryptosystem, that is,
xi, yi ∈ ZN . However, (10) essentially shows that it is possi-
ble to compute an inner product directly in case one of the

two vectors is encrypted. One takes the encrypted samples
Epk(xi), raises them to the power of yi, and multiplies all ob-
tained values. Obviously, the resulting number itself is also in
encrypted form. To carry out further useful signal processing
operations on the encrypted result, for instance, to compare
it to a threshold, another cryptographic primitive is needed,
namely, zero knowledge proof protocols, which is discussed
in the next section.

In this paper, we focus mainly on public-key encryption
schemes, as almost all homomorphic encryption schemes be-
long to this family. The notable exception is the one-time pad
(and derived stream ciphers), where messages taken from a
finite group are blinded by a sequence of uniformly random
group elements. Despite its computationally efficient encryp-
tion and decryption processes, the application of a one-time
pad usually raises serious problems with regard to key dis-
tribution and management. Nevertheless, it may be used to
temporarily blind intermediate values in larger communica-
tion protocols. Finally, it should be noted that some recent
work in cryptography (like searchable encryption [6] and
order-preserving encryption [7]) may also yield alternative
ways for the encryption of signal samples. However, these ap-
proaches have not yet been studied in the context of media
encryption.

To conclude this section, we observe that directly com-
puting the inner product of two encrypted signals is not pos-
sible since this would require a cryptographic system that has
both multiplicative and additive (i.e., algebraic) homomor-
phism. Recent proposals in that direction like [8, 9] were later
proven to be insecure [10, 11]. Therefore, no provably secure
cryptographic system with these properties is known to date.
The construction of an algebraic privacy homomorphism re-
mains an open problem. Readers can refer to [12] for more
details on homomorphic cryptosystems.

2.2.2. Zero-knowledge proof protocols

Zero-knowledge protocols are used to prove a certain state-
ment or condition to a verifier, without revealing any
“knowledge” to the verifier except the fact that the assertion
is valid [19]. As a simple example, consider the case where
the prover Peggy claims to have a way of factorizing large
numbers. The verifier Victor will send her a large number
and Peggy will send back the factors. Successful factorization
of several large integers will decrease Victor’s doubt in the
truth of Peggy’s claim. At the same time Victor will learn “no
knowledge of the actual factorization method.”

Although simple, the example shows an important prop-
erty of zero-knowledge protocol proofs, namely, that they are
interactive in nature. The interaction should be such that
with increasing number of “rounds,” the probability of an
adversary to successfully prove an invalid claim decreases
significantly. On the other hand, noninteractive protocols
(based on the random oracle model) also do exist. A formal
definition of interactive and noninteractive proof systems,
such as zero-knowledge protocols, falls outside the scope of
this paper, but can be found, for instance, in [19].

As an example for a commonly used zero-knowledge
proof, consider the proof of knowing the discrete logarithm
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x of an element y to the base g in a finite field [20]. Hav-
ing knowledge of discrete logarithm x is of interest in some
applications since if

y = gx mod p, (11)

then given p (a large prime number), g, and y (the calcu-
lation of the logarithm x) are computationally infeasible. If
Peggy (the prover) claims she knows the answer (i.e., the
value of x), she can convince Victor (the verifier) of this
knowledge without revealing the value of x by the follow-
ing zero-knowledge protocol. Peggy picks a random number
r ∈ Zp and computes t = gr mod p. She then sends t to Vic-
tor. He picks a random challenge c ∈ Zp and sends this to
Peggy. She computes s = r − cx mod p and sends this to Vic-
tor. He accepts Peggy’s knowledge of x if gs yc = t, since if
Peggy indeed used the correct logarithm x in calculating the
value of s, we have

gs yc mod p = gr−cx
(
gx
)c

mod p = gr = t mod p. (12)

In literature, many different zero-knowledge proofs exist.
We mention a number of them that are frequently used in
secure signal processing:

(i) proof that an encrypted number is nonnegative [21];
(ii) proof that shows that an encrypted number lies in a

certain interval [22];
(iii) proof that the prover knows the plaintext x corre-

sponds to the encryption E(x) [23];
(iv) proofs that committed values (see Section 2.2.3) satisfy

certain algebraic relations [24].

In zero-knowledge protocols, it is sometimes necessary for
the prover to commit to a particular integer or bit value.
Commitment schemes are discussed in the next section.

2.2.3. Commitment schemes

An integer or bit commitment scheme is a method that al-
lows Alice to commit to a value while keeping it hidden from
Bob, and while also preserving Alice’s ability to reveal the
committed value later to Bob. A useful way to visualize a
commitment scheme is to think of Alice as putting the value
in a locked box, and giving the box to Bob. The value in the
box is hidden from Bob, who cannot open the lock (without
the help of Alice), but since Bob has the box, the value in-
side cannot be changed by Alice; hence, Alice is “committed”
to this value. At a later stage, Alice can “open” the box and
reveal its content to Bob.

Commitment schemes can be built in a variety of ways.
As an example, we review a well-known commitment scheme
due to Pedersen [25]. We fix two large primes p and q such
that q | (p − 1) and a generator g of the subgroup of order q
of Z∗p . Furthermore, we set h = ga mod p for some random
secret a. The values p, q, g, and h are the public parameters
of the commitment scheme. To commit to a value m, Alice
chooses a random value r ∈ Zq and computes the commit-
ment c = gmhr mod p. To open the commitment, Alice sends
m and r to Bob, who verifies that the commitment c received
previously indeed satisfies c = gmhr mod p. The scheme is

hiding due to the random blinding factor r; furthermore, it
is binding unless Alice is able to compute discrete logarithms.

For use in signal processing applications, commitment
schemes that are additively homomorphic are of specific
importance. As with homomorphic public key encryption
schemes, knowledge of two commitments allows one to
compute—without opening—a commitment of the sum
of the two committed values. For example, the above-
mentioned Pedersen commitment satisfies this property:
given two commitments c1 = gm1hr1 mod p and c2 = gm2hr2

mod p of the numbers m1 and m2, a commitment c =
gm1+m2hr1+r2 mod p of m1 +m2 can be computed by multiply-
ing the commitments: c = c1c2 mod p. Note that the com-
mitment c can be opened by providing the values m1 + m2

and r1 + r2. Again, the homomorphic property only supports
additions. However, there are situations where it is not possi-
ble to prove the relation by mere additive homomorphism
as in proving that a committed value is the square of the
value of another commitment. In such circumstances, zero-
knowledge proofs can be used. In this case, the party which
possesses the opening information of the commitments com-
putes a commitment of the desired result, hands it to the
other party, and proves in zero-knowledge that the commit-
ment was actually computed in the correct manner. Among
others, such zero-knowledge proofs exist for all polynomial
relations between committed values [24].

2.2.4. Secure multiparty computation

The goal of secure multiparty computation is to evaluate a
public function f (x(1), x(2), . . . , x(m)) based on the secret in-
puts x(i), i = 1, 2, . . . ,m of m users, such that the users learn
nothing except their own input and the final result. A sim-
ple example, called Yao’s Millionaire’s Problem, is the com-
parison of two (secret) numbers in order to determine if
x(1) > x(2). In this case, the parties involved will only learn
if their number is the largest, but nothing more than that.

There is a large body of literature on secure multiparty
computation; for example, it is known [26] that any (com-
putable) function can be evaluated securely in the multi-
party setting by using a general circuit-based construction.
However, the general constructions usually require a large
number of interactive rounds and a huge communication
complexity. For practical applications in the field of dis-
tributed voting, private bidding and auctions, and private in-
formation retrieval, dedicated lightweight multiparty proto-
cols have been developed. An example relevant to signal pro-
cessing application is the multiparty computation known as
Bitrep which finds the encryption of each bit in the binary
representation of a number whose encryption under an ad-
ditive homomorphic cryptosystem is given [27]. We refer the
reader to [28] for an extensive summary of secure multiparty
computations and to [29] for a brief introduction.

2.3. Importance of security requirements

Although the cryptographic primitives that we discussed in
the previous section are useful for building secure signal



6 EURASIP Journal on Information Security

processing solutions, it is important to realize that in each
application the security requirements have to be made ex-
plicit right from the start. Without wishing to turn to formal
definition, we choose to motivate the importance of what to
expect from secure signal processing with three simple yet il-
lustrative two-party computation examples.

The first simple example is the encryption of a (say au-
dio) signal X that contains M samples. Due to the sample-
by-sample encryption strategy as shown in (2), the encrypted
signal Epk(X) will also contain M encrypted values. Hence,
the size M of the plain text signal cannot be hidden by the
approaches followed in secure signal processing surveyed in
this paper.

In the second example, we consider the linear filtering of
the signal X. In an (FIR) linear filter, the relation between the
input signal amplitudes X and output signal amplitudes Y is
entirely determined by the impulse response (h0,h1, . . . ,hr)
through the following convolution equation:

yi = h0xi + h1xi−1 + · · · + hrxi−r =
r∑

k=0

hkxi−k. (13)

Let us assume that we wish to compute this convolution in
a secure way. The first party, Alice, has the signal X and the
second party, Bob, has the impulse response (h0,h1, . . . ,hr).
Alice wishes to carry out the convolution (13) using Bob’s
linear filter. However, both Bob and Alice wish to keep secret
their data, that is, the impulse response and the input signal,
respectively. Three different setups can now be envisioned.

(1) Alice encrypts the signal X under an additive homo-
morphic cryptosystem and sends the encrypted signal
to Bob. Bob then evaluates the convolution (13) on the
encrypted signal as follows:

EpkA

(
yi
) = EpkA

( r∑
k=0

hkxi−k

)

=
r∏

k=0

EpkA

(
hkxi−k

)

=
r∏

k=0

EpkA

(
xi−k

)hk .
(14)

Notice that the additive homomorphic property is
used in the above equation and that, indeed, individ-
ually encrypted signal samples should be available to
Bob. Also notice that the above evaluation is only pos-
sible if both X and (h0,h1, . . . ,hr) are integer-valued,
which is actually quite unlikely in practice. After com-
puting (14), Bob sends the result back to Alice who
decrypts the signal using her private key to obtain the
result Y. In this setup, Bob does not learn the output
signal Y.

(2) Bob encrypts his impulse response (h0,h1, . . . ,hr) un-
der a homomorphic cryptosystem and sends the result
to Alice. Alice then evaluates the convolution (13) us-
ing the encrypted impulse response as follows:

EpkB

(
yi
) = EpkB

( r∑
k=0

hkxi−k

)

=
r∏

k=0

EpkB

(
hkxi−k

)

=
r∏

k=0

EpkB

(
hk
)xi−k .

(15)

Alice then sends the result to Bob, who decrypts to ob-
tain the output signal Y. In this solution, Bob learns
the output signal Y.

(3) Alice and Bob engage in a formal multiparty proto-
col, where the function f (x1, x2, . . . , xM ,h0,h1, . . . ,hr)
is the convolution equation, Alice holds the signal val-
ues xi and Bob the impulse response hi as secret inputs.
Both parties will learn the resulting output signal Y.

Unfortunately, none of the above three solutions really pro-
vides a solution to the secure computation of a convolution
due to inherent algorithm properties. For instance, in the first
setup, Alice could send Bob a signal that consists of all-zero
values and a single “one” value (a so-called “impulse sig-
nal”). After decrypting the result EpkA(yi) that she obtains
from Bob, it is easy to see that Y is equal to (h0,h1, . . . ,hr),
hence Bob’s impulse response is subsequently known to Al-
ice. Similar attacks can be formulated for the other two cases.
In fact, even for an arbitrary input, both parties can learn the
other’s input by a well-known signal processing procedure
known as “deconvolution.” In conclusion, although in some
cases there may be a need for the secure evaluation of convo-
lutions, the inherent properties of the algorithm make secure
computing in a two-party scenario meaningless. (Neverthe-
less, the protocols have value if used as building blocks in a
large application where the output signal Y is not revealed to
the attacker.)

The third and final example is to threshold a signal’s
(weighted) mean value in a secure way. The (secure) mean
value computation is equivalent to the (secure) computation
of the inner product of (3), with X the input signal and Y the
weights that define how the mean value is calculated. In the
most simple case, we have yi = 1 for all i, but other defini-
tions are quite common. Let us assume that Alice wishes Bob
to determine if the signal’s mean value is “critical,” for in-
stance, above a certain threshold value Tc, without revealing
X to Bob. Bob, on the other hand, does not want to reveal his
expert knowledge, namely, the weights Y and the threshold
Tc. Two possible solutions to this secure decision problem
are the following.

(i) Use secure multiparty computation, where the func-
tion f (x1, x2, . . . , xM , y1, y2, . . . , yM ,Tc) is a combina-
tion of the inner product and threshold comparison.
Both parties will only learn if the mean value is critical
or not.

(ii) Alice sends Bob the signal X under additively homo-
morphic encryption. Bob securely evaluates the in-
ner product using (10). After encrypting Tc using Al-
ice’s public key, Bob computes the (encrypted version
of the) difference between the computed mean and
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Figure 2: Compression of an encrypted signal from [30].

threshold Tc. Bob sends the result to Alice, who de-
crypts the result using her secret key and checks if the
value is larger or smaller than zero.

Although the operations performed are similar to the sec-
ond example, in this example the processing is secure since
Bob learns little about Alice’s signal and Alice will learn lit-
tle about the Bob’s expert knowledge. In fact, in the first
implementation, the entire signal processing operation is
ultimately condensed into a single bit of information; the
second implementation leaks more information, namely, the
distance between the correlation value from the threshold.
In both cases, the result represents a high information ab-
straction level, which is insufficient for launching successful
signal processing-based attacks. In contrast, in the example
based on (13), the signal processing operation led to an enor-
mous amount of information—the entire output signal—to
be available to either parties, making signal processing-based
attacks quite easy.

As we will see in Sections 3 and 4, many of the two-party
secure signal processing problems eventually include an in-
formation condensation step, such as (in the most extreme
case) a binary decision. We postulate that for two-party lin-
ear signal processing operations in which the amount of plain
text information after processing is in the same order of mag-
nitude as before processing, no secure solutions exist purely
based on the cryptographic primitives discussed in the previ-
ous section, due to inherent properties of the signal process-
ing problems and the related application scenario. For that
reason, entirely other approaches to secure signal processing
are also of interest. Although few results can be found in lit-
erature on approaches not using homomorphic encryption,
zero-knowledge proofs, and multiparty computation proto-
cols, the approach discussed in the next section may well
show a possible direction for future developments.

2.4. Compression of encrypted signals

When transmitting signals that contain redundancy over an
insecure and bandwidth-constrained channel, it is custom-
ary to first compress and then encrypt the signal. Using the
principles of coding with side information, it is, however, also
possible to interchange the order of (lossless) compression
and encryption, that is, to compress encrypted signals [30].

The concept of swapping the order of compression and en-
cryption is illustrated in Figure 2. A signal from the message
source is first encrypted and then compressed. The compres-
sor does not have access to the secret key used in the encryp-
tion. At the decoder, decompression and decryption are per-
formed jointly. From classical information theory, it would
seem that only minimal gain could be obtained as the en-
crypted signal has maximal entropy, that is, no redundancy
is left after encryption. However, the decoder can use the
cryptographic key to decode and decrypt the compressed and
encrypted bit stream. This brings opportunities for efficient
compression of encrypted signals based on principle of cod-
ing with side information. In [30], it was shown that neither
compression performance nor security need to be negatively
impacted under some reasonable conditions.

In source coding with side information, the signal X is
coded under the assumption that the decoder—but not the
encoder—has statistically dependent information Y, called
the side information, available. In conventional coding sce-
narios, the encoder would code the difference signal X−Y in
some efficient way, but in source coding with side informa-
tion, this is impossible since we assume that Y is only known
at the decoder. In the Slepian-Wolf coding theory [31], the
crucial observation is that the side information Y is regarded
as a degraded version of X. The degradations are modeled as
“noise” on the “virtual channel” between X and Y. The signal
X can then be recovered from Y by the decoder if sufficient
error-correcting information is transmitted over the chan-
nel. The required bit rate and amount of entropy are related
as R ≥ H(X | Y). This shows that, at least theoretically, there
is no loss in compression efficiency since the lower bound
H(X | Y) is identical to the scenario in which Y is available
at the encoder. Extension of the Slepian-Wolf theory exists
for lossy source coding [32]. In all practical cases of interests,
the information bits that are transmitted over the channel are
parity bits or syndromes of channel coding methods such as
Hamming, Turbo or LDPC codes.

In the scheme depicted in Figure 2, we have a similar sce-
nario as in the above source coding with side information
case. If we consider the encrypted signal Ek(X) at the input of
the encoder, then we see that the decoder has the key k avail-
able, representing the “statistically dependent side informa-
tion.” Hence, according to the Slepian-Wolf viewpoint, the
encrypted signal Ek(X) can be compressed to a rate that is
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the same as if the key k would be available during the source
encoding process, that is, R ≥ H(Ek(X) | k) = H(X). This
clearly says that the (lossless) coding of the encrypted sig-
nal Ek(X) should be possible with the same efficiency as the
(lossless) coding of X. Hence, using the side information key
k, the decoder can recover first Ek(X) from the compressed
channel bit stream and subsequently decode Ek(X) into X.

A simple implementation of the above concept for a bi-
nary signal X uses a pseudorandomly generated key. The key
k is in this case a binary signal K of the same dimension M as
the signal X. The encrypted signal is computed as follows:

Ek(X) = X⊕K,

Ek
(
xi
) = xi ⊕ ki, i = 1, 2, . . . ,M.

(16)

The encrypted signal Ek(X) is now input to a channel cod-
ing strategy, for instance, a Hamming coding. The strength
of the Hamming code is dependent on the dependency be-
tween Ek(X) and the side information K at the decoder.
This strength obviously depends solely on the properties of
the original signal X. This does, however, require the mes-
sage source to inform the source encoder about the entropy
H(X), which represents a small leak of information. The en-
coder calculates parity check bits over binary vectors of some
length L created by concatenating L bits of the encrypted
signal Ek(X), and sends only these parity check bits to the
receiver.

The decoder recovers the encrypted signal by first ap-
pending to K the parity check bits, and then error correcting
the resulting bit pattern. The success of this error correction
step depends on the strength of the Hamming code, but as
mentioned, this strength has been chosen sufficiently with
regards to the “errors” in K on the decoding side. Notice that
in this particular setup the “errors” represent the bits of the
original signal X. If the error correction step is successful,
the decoder obtains Ek(X), from which the decryption can
straightforwardly take place:

X = Ek(X)⊕K,

xi = Ek
(
xi
)⊕ ki, i = 1, 2, . . . ,M.

(17)

The above example is too simple for any practical sce-
nario for a number of reasons. In the first place, it uses only
binary data, for instance, bit planes. More efficient coding
can be obtained if the dependencies between bit planes are
considered. This effectively requires an extension of the bit
plane coding and encryption approach to coding and en-
cryption of symbol values. Secondly, the decoder lacks a
model of the dependencies in X. Soft decoders for Turbo or
LDPC codes can exploit such message source models, yield-
ing improved performance. Finally, the coding strategy is
lossless. For most continuous or multilevel message sources,
such as audio, images, and video, lossy compression is desir-
able.

3. ANALYSIS AND RETRIEVAL OF CONTENT

In the today’s society, huge quantities of personal data are
gathered from people and stored in databases for various

purposes ranging from medical researches to online person-
alized applications. Sometimes, providers of these services
may want to combine their data for research purposes. A
classical example is the one where two medical institutions
wish to perform joint research on the union of their pa-
tients data. Privacy issues are important in this scenario be-
cause the institutions need to preserve their private data dur-
ing their cooperation. Lindell and Pinkas [33] and Agrawal

and Srikant [34] proposed the notion of privacy preserving
data mining, meaning the possibility to perform data analysis
from distributed database, under some privacy constraints.
Privacy preserving data mining [35–38] deals with mutual
untrusted parties that on the one hand wish to cooperate to
achieve a common goal but, on the other hand, are not will-
ing to disclose their knowledge to each other.

There are several solutions that cope with exact matching
of data in a secure way. However, it is more common in signal
processing to perform inexact matching, that is, learning the
distance between two signal values, rather than exact match-
ing. Consider two signal values x1 and x2. Computing the
distance between them or checking if the distance is within a
threshold is important:

∣∣x1 − x2
∣∣ < ε. (18)

This comparison or fuzzy matching can be used in a vari-
ety of ways in signal processing. One example is quantizing
data which is of crucial importance for multimedia compres-
sion schemes. However, considering that these signal values
are encrypted—thus the ordering between them is totally de-
stroyed, there is not any efficient way known to fuzzy com-
pare two values.

In the following sections, we give a summary of tech-
niques that focus on extracting some information from pro-
tected datasets. Selected studies mostly use homomorphic
encryption, zero-knowledge proofs, and, sometimes, multi-
party computations. As we will see, most solutions still re-
quire substantial improvements in communication and com-
putation efficiency in order to make them applicable in prac-
tice. Therefore, the last section addresses a different approach
that uses other means of preserving privacy to show that fur-
ther research on combining signal processing and cryptogra-
phy may result in new approaches rather than using encryp-
tion schemes and protocols.

3.1. Clustering

Clustering is a well-studied combinatorial problem in data
mining [39]. It deals with finding a structure in a collection
of unlabeled data. One of the basic algorithms of cluster-
ing is the K-means algorithm that partitions a dataset into
K clusters with a minimum error. We review the K-means
algorithm and its necessary computations such as distance
computation and finding the cluster centroid, and show that
cryptographic protocols can be used to provide user’s privacy
in clustering for certain scenarios.
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Figure 3: Clustered dataset. Each object is a point in the 2-
dimensional space. K-means clustering algorithm assigns each ob-
ject to the cluster with the smallest distance.

(1) select K random objects representing the K
initial centroid of the clusters.

(2) assign each object to the cluster with the
nearest centroid.

(3) recalculate the centroids for each cluster.
(4) repeat step 2 and 3 until centroids do not

change or a certain threshold achieved.

Algorithm 1: The K-means clustering algorithm

3.1.1. K -means clustering algorithm

The K-means clustering algorithm partitions a dataset D of
“objects” such as signal values or features thereof into K dis-
joint subsets, called clusters. Each cluster is represented by its
center which is the centroid of all objects in that subset.

As shown in Algorithm 1, the K-means algorithm is an
iterative procedure that refines the cluster centroids until a
predefined condition is reached. The algorithm first chooses
K random points as the cluster centroids in the dataset D
and assigns the objects to the closest cluster centroid. Then,
the cluster centroid is recomputed with recently assigned ob-
jects. When the iterative procedure reaches the termination
condition, each data object is assigned to the closest cluster
(Figure 3). Thus to carry out the K-means algorithm, the fol-
lowing quantities needs to be computed:

(i) the cluster centroid, or the mean of the data objects in
that cluster,

(ii) the distance between an object and the cluster cen-
troid,

(iii) the termination condition which is a distance mea-
surement compared to a threshold.

Attribute names

Data owned by Alice

Data owned by Bob

Figure 4: Shared dataset on which K-means algorithm is run.

In the following section, we describe a secure protocol that
carries out secure K-means algorithm on protected data ob-
jects.

3.1.2. Secure K -means clustering algorithm

Consider the scenario in which Alice and Bob want to apply
the K-means algorithm on their joint datasets as shown in
Figure 4, but at the same time they want to keep their own
dataset private. Jagannathan and Wright proposed a solution
for this scenario in [40].

In the proposed method, both Alice and Bob get the fi-
nal output but the values computed in the intermediate steps
are unknown to the both parties. Therefore, the intermediate
values such as cluster centroids are uniformly shared between
Alice and Bob in such a way that for a value x, Alice gets a
random share a and Bob gets another random share b, where
(a + b) modN = x and N is the size of the field in which all
operations take place. Alice and Bob keep their private shares
of the dataset secret.

The secure K-means clustering algorithm is separated
into subprotocols where Alice and Bob computes the follow-
ings (Algorithm 2).

(i) Distance measurement and finding the closest cluster: the
distance between each object and cluster centroid is
computed by running a secure scalar product proto-
col by Goethals et al. [41]. The closest cluster centroid
is determined by running Yao’s circuit evaluation pro-
tocol [42] with the shared data of Alice and Bob.

(ii) New cluster centroid: the new cluster centroid requires
to determine an average computation over shared val-
ues of Alice and Bob. This function of the form (a +
b)/(m+n) can be computed by applying Yao’s protocol
where Alice knows a and m and Bob knows b and n.
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Randomly select K objects from the dataset D as initial
cluster centroids
Randomly share the cluster centroid between Alice
and Bob
repeat

for all object dk in dataset D do
Run the secure closest cluster protocol
Assign to dk to the closest cluster

end for
Alice and Bob computes the random shares for the new
centroids of the clusters.

until cluster centroids are close to each other with an error
of ε.

Algorithm 2: Privacy preserving K-means clustering algorithm.

(iii) Termination condition: the termination condition of
the algorithm is computed by running the Yao’s circuit
evaluation protocol [42].

The squared distance between an object Xi = (xi,1, . . . , xi,M)
and a cluster centroid μj is given by the following equation:

(
dist

(
Xi,μj

))2

= (xi,1 − μj,1
)2

+
(
xi,2 − μj,2

)2
+ · · · +

(
xi,M − μj,M

)2
.

(19)

Considering that the clusters centroids are shared between
Alice and Bob, (19) can be written as(

dist
(

Xi,μj
))2

= (xi,1 − (μAj,1 + μBj,1
))2

+ · · · +
(
xi,M −

(
μAj,M + μBj,M

))2
,

(20)

where μAj is Alice’s share and μBj is Bob’s share such that the

jth-cluster centroid is μj = μAj +μBj . Then, (20) can be written
as

(
dist

(
Xi,μj

))2=
M∑
k=1

x2
i,k+

M∑
k=1

(
μAj,k
)2

+
M∑
k=1

(
μBj,k
)2

+2
M∑
k=1

μAj,kμ
B
j,k

− 2
M∑
k=1

μAj,kxi,k − 2
M∑
k=1

xi,kμ
B
j,k.

(21)

Equation (21) can be computed by Alice and Bob jointly. As
the first term of the equation is shared between them, Al-
ice computes the sum of components of her share while Bob
computes the rest of the components. The second term and
third term can be computed by Alice and Bob individually,
and the rest of the terms are computed by running a secure
scalar product protocol between Alice and Bob, much similar
to the evaluation of (3) via the secure form of (10). Alice first
encrypts her data EpkA(μAj ) = (EpkA(μAj,1), . . . ,EpkA(μAj,M)) and
sends it to Bob who computes the scalar product of this data
with his own by using the additive homomorphic property

of the encryption scheme as follows:

EpkA

(
μAj
)μBj = (EpkA

(
μAj,1
)μBj,1 , . . . ,EpkA

(
μAj,M

)μBj,M). (22)

Then, multiplying the encrypted components gives the en-
crypted scalar product of Alice’s and Bob’s data

EpkA

( M∑
k=1

μAj,kμ
B
j,k

)
=

M∏
k=1

EpkA

(
μAj,k
)μBj,k . (23)

The computed distances between the objects and the cluster
centroids can later be the input to the Yao’s circuit evaluation
protocol [42] in which the closest cluster centroid is deter-
mined. We refer readers to [41, 42] for further details on this
part.

Once the distances and the closest clusters to the objects
are determined, each object is labeled with the nearest cluster
index. At the end of each iteration, it is necessary to compute
the new cluster centroids. Alice computes the sum of the cor-
responding coordinates of all object s j and the number of
objects nj within each of the K clusters for j, 1 ≤ j ≤ M.
As shown in Figure 4, Alice has only some of the attributes of
the objects, thus she treats these missing values as zero. Bob
also applies the same procedure and determines the sum of
coordinates t j and the number of objects mj in the clusters.
Given s j , t j ,nj , and mj , the jth component of the ith cluster
is

μi, j =
s j + t j
nj + mj

. (24)

Since there are only four values, this equation can be com-
puted efficiently by using Yao’s circuit evaluation protocol
[42] with Alice’s shares s j and nj and Bob’s shares t j and mj .

In the last step of the K-means algorithm, the iteration
is terminated if there is no further improvement between the
previous and current cluster centroids. In order to do that, a
distance is computed between the previous and current clus-
ter centroids. This is done in the same way as computing dis-
tances between an object and a cluster centroid but in addi-
tion, this distance is compared to a threshold value ε. Con-
sidering that the cluster centroids are shared between Alice
and Bob, the result of the computation of the squared dis-
tance of cluster centroids for the kth and (k + 1)th iterations
is again random shares for Alice and Bob:

(
dist

(
μA,k+1
j + μB,k+1

j ,μA,k
j + μB,k

j

))2 = αj + βj , (25)

where α and β are the shares of Alice and Bob. Alice and
Bob then apply Yao’s protocol on their K-length vectors
(α1, . . . ,αK ) and (β1, . . . ,βK ) to check if αj + βj < ε for
1 ≤ j ≤ K .

3.2. Recommender systems

Recommender services play an important role in applica-
tions like e-commerce and direct recommendations for mul-
timedia contents. These services attempt to predict items that
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a user may be interested in by implementing a signal process-
ing algorithm known as collaborative filtering on user prefer-
ences to find similar users that share the same taste (likes or
dislikes). Once similar users are found, this information can
be used in variety ways such as recommending restaurants,
hotels, books, audio, and video.

Recommender systems store user data, also known as
preferences, in servers, and the collaborative filtering algo-
rithms work on these stored preferences to generate recom-
mendations. The amount of data collected from each user
directly affects the accuracy of the predictions. There are two
concerns in collecting information from the users in such
systems. First, in an ordinary system they are in the order of
thousands items, so that it is not realistic for the users to rate
all of them. Second, users would not like to reveal too much
privacy sensitive information that can be used to track them.

The first problem, also known as the sparseness problem
in datasets, is addressed for collaborative filtering algorithms
in [43–45]. The second problem on user privacy is of interest
to this survey paper since users tend to not give more infor-
mation about themselves for privacy concerns and yet they
expect more accurate recommendations that fit their taste.
This tradeoff between privacy and accuracy leads us to an
entirely new perspective on recommender systems. Namely,
how can privacy of the users be protected in recommender
systems without loosing too much accuracy?

We describe two solutions that address the problem of
preserving privacy of users in recommender systems. In the
first approach, user privacy is protected by means of encryp-
tion and the recommendations are still generated by pro-
cessing these encrypted preference values. In the second ap-
proach, protecting the privacy of the users is possible without
encryption but by means of perturbation of user preference
data.

3.2.1. Recommendations by partial SVD on
encrypted preferences

Canny [46] addresses the user privacy problem in recom-
mender systems and proposes to encrypt user preferences.
Assume that the recommender system applies a collaborative
filtering algorithm on a matrix P of users versus item ratings.
Each row of this matrix represents the corresponding user’s
taste for the corresponding items. Canny proposes to use a
collaborative filtering algorithm based on dimension reduc-
tion of P. In this way, an approximation matrix of the orig-
inal preference matrix is obtained in a lower dimension that
best represents the user taste for the overall system. When a
new user enters the system, the recommendations are gener-
ated by simply reprojecting the user preference vector, which
has many unrated items, over the approximation matrix. As a
result, a new vector will be obtained which contains approx-
imated values for the unrated items [43, 46].

The ratings in recommender systems are usually integer
numbers within a small range and items that are not rated are
usually assigned to zero. To protect the privacy of the users,
the user preferences vector X = [x1, x2, . . . , xM] is encrypted
individually as Epk(X). To reduce the dimension of the pref-

erence matrix P singular value decomposition (SVD) is an
option. The SVD allows P to be written as

P = UDVT , (26)

where the columns of U are the left singular vectors, D is a
diagonal matrix containing the singular values, and VT has
rows that are the right singular vectors.

Once the SVD of the preference matrix P is computed,
an approximation matrix in a lower-dimension subspace can
be computed easily. Computing the SVD on P that contains
encrypted user preferences is, however, more complicated.

Computing the decomposition of the users’ preference
matrix requires sums of products of vectors. If the preference
vector of each user is encrypted, there is no efficient way of
computing sums of products of vectors since this would re-
quire an algebraic homomorphic cryptosystem. Using secure
multiparty computation protocols on this complex function
is costly considering the size of the circuit necessary for the
complex operation.

Instead of straightforward computation of SVD, Canny
[46] proposed to use an iterative approximation algorithm
to obtain a partial decomposition of the user preference ma-
trix. The conjugate gradient algorithm is an iterative pro-
cedure consisting merely of additions of vectors which can
be done under homomorphically encrypted user preference
vectors. Each iteration in the protocol has two steps, that is,
users compute (1) their contribution to the current gradient
and (2) scalar quantities for the optimization of the gradi-
ent. Both steps require only additions of vectors thus we only
explain the first step.

For the first step of the iterations, each user computes his
contribution Gk to the current gradient G by the following
equation:

Gk = AXT
k Xk

(
I− ATA

)
, (27)

where matrix A is the approximation of the preference ma-
trix P and it is initialized as a random matrix before the pro-
tocol starts. Each user encrypts his own gradient vector Gk

with the public key of the user group by following the Peder-
sen’s threshold scheme [47] that uses El Gamal cryptosystem
which is modified to be additively homomorphic. All con-
tributions from the users are then added up to form the en-
crypted gradient Epk(G) by using the additive homomorphic
property of the cryptosystem:

Epk(G) = Epk

( ∑
k∈users

Gk

)
=

∏
k∈users

Epk
(

Gk
)
. (28)

This resulting vector Epk(G) is then jointly decrypted and
used to update the approximated matrix A which is publicly
known and used to compute the new gradient for the next
iteration.

Although the protocol is based on addition of vectors,
zero-knowledge proof protocols play an important role. The
validity of the user inputs, that is, the encrypted preference
vector elements lie in a certain range, are verified by zero-
knowledge proofs. Moreover, the partial encryption results
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Figure 5: Privacy preserving collaborative filtering with user pref-
erence perturbation.

from the users are also proved valid by running a zero-
knowledge proof protocol. Both group of zero-knowledge
proofs are checked by a subgroup of users of whose major-
ity is necessary for the validation.

Canny [48] also applies this approach to a different
collaborative filtering method, namely, expectation maxi-
mization- (EM-) based factor analysis. Again this algorithm
involves simple iterative operations that can be implemented
by vector additions. In both recommender system solutions,
multiple iterations are necessary for the algorithm to con-
verge and in each iteration, users need to participate in the
cryptographic computations as in joint decryption and zero-
knowledge proofs for input validation. These computations
are interactive and thus, it is imperative for the users to be
online and synchronized.

3.2.2. Randomized perturbation to protect preferences

Previous section showed that homomorphic cryptosystems,
zero-knowledge proof protocols, and secure multiparty com-
putations play an important role in providing solutions for
processing encrypted data. However, there are other ways to
preserve privacy. In the following, we discuss preserving pri-
vacy in recommender systems by perturbation of user data.

Randomized perturbation technique was first intro-
duced in privacy-preserved data-mining by Agrawal and
Srikant [34]. Polat and Du [49, 50] proposed to use this
randomization-based technique in collaborative filtering.
The user privacy is protected by simply randomizing user
data while certain computations on aggregate data can still
be done. Then, the server generates recommendations based
on the blinded data but can not derive the user’s private in-
formation (Figure 5).

Consider the scalar product of two vectors X and Y.
These vectors are blinded by R = [r1, . . . , rM] and S = [s1,
. . . , sM] such that X′ = X + R and Y′ = Y + S. Here ri’s and
si’s are uniformly distributed random values with zero mean.
The scalar product of X and Y can be estimated from X′ and
Y′:

X′ · Y′ =
M∑
k=1

(
xk yk + xksk + rk yk + rksk

) ≈ M∑
k=1

xk yk. (29)

Since R and S are independent and independent of X and
Y, we have

∑M
k=1xksk ≈ 0,

∑M
k=1rk yk ≈ 0, and

∑M
k=1rksk ≈ 0.

Similarly, the sum of the elements of any vector A can be esti-
mated from its randomized form A′. Polat and Du used these
two approximations to develop a privacy-preserving collab-
orative filtering method [49, 50].

This method works if the number of users in the system is
significantly large. Only then the computations based on ag-
gregated data can still be computed with sufficient accuracy.
Moreover, it is also pointed out in [51, 52] that the idea of
preserving privacy by adding random noise might not pre-
serve privacy as much as it had been believed originally. The
user data can be reconstructed from the randomly perturbed
user data matrix. The main limitation in the original work of
Polat and Du is shown to be the item-invariant perturbation
[53]. Therefore, Zhang et al. [53] propose a two-way com-
munication perturbation scheme for collaborative filtering
in which the server and the user communicates to determine
perturbation guidance that is used to blind user data before
sending to the server. Notwithstanding these approaches, the
security of such schemes based on perturbation of data is not
well understood.

4. CONTENT PROTECTION

4.1. Watermarking of content

In the past decade, content protection measures have been
proposed based on digital watermarking technology. Digi-
tal watermarking [54, 55] allows hiding into a digital con-
tent information that can be detected or extracted at a later
moment in time by means of signal processing operations
such as correlation. In this way, digital watermarking pro-
vides a communication channel multiplexed into original
content through which it is possible to transmit informa-
tion. The type of information transmitted from sender to re-
ceiver depends on the application at hand. As an example, in
a forensic tracing application, a watermark is used to embed
a unique code into each copy of the content to be distributed,
where the code links a copy either to a particular user or to
a specific device. When unauthorized published content is
found, the watermark allows to trace the user who has redis-
tributed the content.

Secure signal processing needs to be performed in case
watermark detection or embedding is done in untrusted de-
vices; watermarking schemes usually rely on a symmetric key
for both embedding and detection, which is critical to both
the robustness and security of the watermark and thus needs
to be protected.

For the application of secure signal processing in con-
tent protection, three categories can be identified, namely,
distribution models, customer rights protection, and secure
watermark detection. The first two categories are relevant to
forensic tracing (fingerprinting) applications. In classical dis-
tribution models, the watermark embedding process is car-
ried out by a trusted server before releasing the content to the
user. However this approach is not scalable, and in large-scale
distribution systems, the server may become overloaded. In
addition, since point-to-point communication channels are
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Figure 6: A digital watermarking model.

required, bandwidth requirements become prohibitive. A
proposed solution is to use client-side watermark embed-
ding. Since the client is untrusted, the watermark needs to
be embedded without the client having access to the original
content and watermark.

The customer’s rights problem relates to the intrinsic
problem of ambiguity when watermarks are embedded at the
distribution server: a customer whose watermark has been
found on unauthorized copies can claim that he has been
framed by a malicious seller who inserted his identity as wa-
termark in an arbitrary object. The mere existence of this
problem may discredit the accuracy of the forensic tracing
architecture. Buyer-seller protocols have been designed to
embed a watermark based on the encrypted identity of the
buyer, making sure that the watermarked copy is available
only to the buyer and not to the seller.

In the watermark detection process, a system has to prove
to a verifier that a watermark is present in certain content.
Proving the presence of such a watermark is usually done
by revealing the required detection information to the ver-
ifying party. All current applications assume that the verifier
is a trusted party. However, this is not always true, for in-
stance, if the prover is a consumer device. A cheating veri-
fier could exploit the knowledge acquired during watermark
detection to break the security of the watermarking system.
Cryptographic protocols, utilizing zero-knowledge proofs,
have been constructed in order to mitigate this problem.

We will first introduce a general digital watermarking
model to define the notation that will be useful in the
remainder of the section. An example of a watermarking
scheme is proposed, namely, the one proposed by Cox et al.
[56] since this scheme is adopted in many of the content pro-
tection applications.

4.1.1. Watermarking model

Figure 6 shows a common model for a digital watermark-
ing system [57]. The inputs of the system are the original
host signal X and some application dependent to-be-hidden
information, here represented as a binary string B = [b1,
b2, . . . , bL], with bi taking values in {0, 1}. The embedder in-
serts the watermark code B into the host signal to produce
a watermarked signal Xw, usually making use of a secret key
sk to control some parameters of the embedding process and
allow the recovery of the watermark only to authorized users.

The watermark channel takes into account all processing
operations and (intentional or non-intentional) manipula-
tions the watermarked content may undergo during distri-

bution and use. As a result, the watermarked content Xw is
modified into the “received” version X′. Based on X′, either
a detector verifies the presence of a specific message given to
it as input, thus only answering yes or no, or a decoder reads
the (binary) information conveyed by the watermark. Detec-
tors and decoders may need to know the original content X
in order to retrieve the hidden information (non-blind de-
tector/decoder), or they do not require the original content
(blind or oblivious detector/decoder).

4.1.2. Watermarking algorithm

Watermark information is embedded into host signals by
making imperceptual modifications to the host signal. The
modifications are such that they convey the to-be-hidden in-
formation B. The hidden information can be retrieved after-
wards from the modified content by detecting the presence
of these modifications. Embedding is achieved by modifying
the set of features X = [x1, x2, . . . , xM]. In the most simple
case, the features are simple signal amplitudes. In more com-
plicated scenarios, the features can be DCT or wavelet coeffi-
cients. Several watermarking schemes make use of a spread-
spectrum approach to code the to-be-hidden information B
into W = [w1,w2, . . . ,wM]. Typically, W is a realization of a
normally distributed random signal with zero mean and unit
variance.

The most well-known spread-spectrum techniques was
proposed by Cox et al. [56]. The host signal is first trans-
formed into a discrete cosine transform (DCT) representa-
tion. Next the largest magnitude DCT coefficients are se-
lected, obtaining the set of features X. The multiplicative wa-
termark embedding rule is defined as follows:

xw,i = xi + γwixi = xi
(
1 + γwi

)
, (30)

where xw,i is the ith component of the watermarked feature
vector and γ is a scaling factor controlling the watermark
strength. Finally, an inverse DCT transform yields the wa-
termarked signal Xw.

To determine if a given signal Y contains the watermark
W, the decoder computes the DCT of Y, extracts the set X′ of
largest DCT coefficients, and then computes the correlation
ρX′W between the features X′ and the watermark W. If the
correlation is larger than a threshold T , that is,

ρX′W = 〈X′, W〉
〈X′, X′〉 ≥ T , (31)

the watermark is considered present in Y.



14 EURASIP Journal on Information Security

4.2. Client-side watermark embedding

Client-side watermark embedding systems transmit the same
encrypted version of the original content to all the clients but
a client-specific decryption key allows to decrypt the content
and at the same time implicitly embed a watermark. When
the client uses his key to decrypt the content, he obtains a
uniquely watermarked version of the content. The security
properties of the embedding scheme usually guarantees that
obtaining either the watermark or the original content in the
clear is of comparable hardness as removing the watermark
from the personalized copy.

In literature, several approaches for secure embedding
can be found. In [58], a pseudorandom mask is blended over
each frame of a video. Each client is given a different mask,
which, when subtracted from the masked broadcast video,
leaves an additive watermark in the content. The scheme is
not very secure because since the same mask is used for all
frames of a video, it can be estimated by averaging attacks.

In broadcast environments, stream switching [59, 60]
can be performed. Two differently watermarked signals are
chopped up into small chunks. Each chunk is encrypted by
a different key. Clients are given a different set of decryp-
tion keys that allow them to selectively decrypt chunks of the
two broadcast streams such that each client obtains the full
stream decrypted. The way the full stream is composed out
of the two broadcast versions encodes the watermark. This
solution consumes considerable bandwidth, since the data to
be broadcast to the clients is twice as large as the content it-
self.

A second solution involves partial encryption, for in-
stance, encrypting the signs of DCT coefficients of a signal
[61]. Since the sign bits of DCT coefficients are perceptu-
ally significant, the partially encrypted version of the signal
is heavily distorted. During decryption, each user has a dif-
ferent key that decrypts only a subset of these coefficients, so
that some signs are left unchanged. This leaves a detectable
fingerprint in the signal. A similar approach was used in [62]
to obtain partial encryption-based secure embedding solu-
tions for audiovisual content.

A third approach is represented by methods using a
stream-cipher that allows the use of multiple decryption
keys, which decrypt the same cipher text to slightly differ-
ent plain-texts. Again, the difference between the original
and the decrypted content represents the embedded water-
mark. The first scheme following this approach was pro-
posed by Anderson and Manifavans [63] who designed a
special stream cipher, called Chameleon, which allows to
decrypt Chameleon-encrypted content in slightly different
ways. During encryption, a key and a secure index generator
are used to generate a sequence of indices, which are used to
select four entries from a look-up-table (LUT). These entries
are XORed with the plaintext to form a word of the cipher
text. The decryption process is identical to encryption except
for the use of a decryption LUT, which is obtained by prop-
erly inserting bit errors in some entries of the encryption
LUT. Decryption superimposes these errors onto the con-
tent, thus leaving a unique watermark. Recently, Adelsbach
et al. [64] and Celik et al. [65] proposed generalizations of

X
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sk
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Figure 7: Encryption and following joint decryption and water-
marking procedure proposed in [65].

Chameleon, suitable for embedding robust spread-spectrum
watermarks. The schemes operate on LUTs composed of in-
tegers from Zp and replace the XOR operation by a (modu-
lar) addition.

In more detail, the secure embedding solution works as
follows. The distribution server generates a long-term mas-
ter encryption LUT E of size L, whose entries properlygener-
ated random samples; E will be used to encrypt the content
to be distributed to the clients. Next, for the kth client, the
server generates a personalized watermark LUT Wk accord-
ing to a desired probability distribution, and builds a person-
alized decryption LUT Dk by combining the master LUT and
the watermark LUT:

Dk[i] = −E[i] + Wk[i]. (32)

The personalized LUTs are then transmitted once to each
client over a secure channel. Let us note that the generation
of the LUTs is carried out just once at the setup of the ap-
plication. A content X is encrypted by adding to it a pseu-
dorandom sequence obtained by selecting some entries of
the LUT with a secure pseudorandom sequence generator
driven by a session key sk. Each client receives the encrypted
content X′ along with the session key sk and decrypts it us-
ing some entries of his/her personalized decryption LUT Dk

(again chosen according to sk), with the final effect that a
spread-spectrum watermark sequence is embedded into the
decrypted content. This process is summarized in Figure 7.
In detail, driven by the session key sk, a set of indices ti j is
generated, where 0 ≤ i ≤M−1, 0 ≤ j ≤ S−1, 0 ≤ ti j ≤ L−1.
Each feature of the content xi is encrypted by adding S entries
of the encryption LUT, obtaining the encrypted feature x′i as
follows:

x′i = xi +
S−1∑
j=0

E
[
ti j
]
. (33)

Joint decryption and watermarking is accomplished by re-
constructing with the session key sk the same set of indices
ti j and by adding S entries of the decryption LUT to each en-
crypted feature x′i :

xw,i = x′i +
S−1∑
j=0

D
[
ti j
] = xi +

S−1∑
j=0

W
[
ti j
] = xi + wi. (34)
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4.3. Buyer seller protocols

Forensic tracing architectures which perform watermark em-
bedding at the distribution server are vulnerable against a
dishonest seller. The mere fact that a seller may fool a buyer
may have an impact on the credibility of the whole tracing
system. (Note that a seller may in fact have an incentive to
fool a buyer: a seller who acts as an authorized reselling agent
may be interested in distributing many copies of a work con-
taining the fingerprint of a single buyer to avoid paying the
royalties to the author by claiming that such copies were ille-
gally distributed or sold by the buyer.)

A possible solution consists in resorting to a trusted third
party, responsible for both embedding and detection of wa-
termarks; however, such an approach is not feasible in prac-
tical applications because the TTP could easily become a bot-
tleneck for the whole system. The Buyer-Seller Protocol relies
on cryptographic primitives to perform watermark embed-
ding [66]; the protocol assures that the seller does not have
access to the watermarked copy carrying the identity of the
buyer, hence he cannot distribute or sell these copies. In spite
of this, the seller can identify the buyer from whom unau-
thorized copies originated, and prove it by using a proper
dispute resolution protocol.

We describe the protocol by Memon and Wong [66] in
more detail. Let Alice be the seller, Bob the buyer, and WCA a
trusted watermark certification authority in charge of gener-
ating legal watermarks and sending them to any buyer upon
request. The protocol uses a public key cryptosystem which
is homomorphic with respect to the operation used in the
watermark embedding equation (i.e., the cryptosystem will
be multiplicatively homomorphic if watermark embedding
is multiplicative, like in Cox’s scheme); moreover, Alice and
Bob possess a pair of public/private keys denoted by pkA, pkB
(public keys) and skA, skB (private keys).

In the first part of the protocol, on request of Bob, the
WCA generates a valid watermark signal W and sends it back
to Bob, encrypted with Bob’s public key EpkB (W), along with
its digital signature SWCA(EpkB (W)), to prove that the water-
mark is valid.

Next, Bob sends to Alice EpkB (W) and SWCA(EpkB (W)),
so that Alice can verify that the encrypted watermark has
been generated by the WCA. Alice performs two watermark
embedding operations. First, she embeds (with any water-
marking scheme) into the original content X a watermark
V, which just conveys a distinct ID univocally identifying the
transaction, obtaining the watermarked content X′. Next, a
second watermark is built by using EpkB (W): Alice permutes
the watermark components through a secret permutation σ :

σ
(
EpkB (W)

) = EpkB

(
σ(W)

)
, (35)

and inserts EpkB (σ(W)) in X′ directly in the encrypted do-
main, obtaining the final watermarked content X′′ in en-
crypted form; X′′ is thus unknown to her. This is possible
due to the homomorphic property of the cipher:

EpkB (X′′) = EpkB (X′) · EpkB

(
σ(W)

)
. (36)

When Bob receives EpkB (X′′), he decrypts it by using his pri-
vate key skB, thus obtaining X′′, where the watermarks V and

σ(W) are embedded. Note that Bob cannot read the water-
mark σ(W), since he does not know the permutation σ . The
scheme is represented in Figure 8.

In order to recover the identity of potential copyright
violators, Alice first looks for the presence of V. Upon de-
tection of an unauthorized copy of X, say Y, she can use
the second watermark to effectively prove that the copy is
originated from Bob. To do so, Alice must reveal to judge
the permutation σ , the encrypted watermark EpkB (W) and
SWCA(EpkB (W)). After verifying SWCA(EpkB (W)), the judge
asks Bob to use his private key skB to compute and reveal
W. Now it is possible to check Y for the presence of σ(W):
if such a presence is verified, then Bob is judged guilty, oth-
erwise, Bob’s innocence has been proven. Note that if σ(W)
is found in Y, Bob cannot state that Y originated from Alice
since to do so Alice should have known either W to insert it
within the plain asset X, or skB to decrypt EpkB (X′′) after the
watermark was embedded in the encrypted domain.

As a particular implementation of the protocol, [66] pro-
posed to use Cox’s watermarking scheme and a multiplica-
tively homomorphic cipher (despite its deterministic nature,
authors use RSA). More secure and less complex implemen-
tations of the Buyer Seller Protocol have been proposed in
[67–70].

4.4. Secure watermark detection

To tackle the problem of watermark detection in the pres-
ence of an untrusted verifier (to whom the watermark se-
crets cannot be disclosed), two approaches have been pro-
posed: one approach called asymmetric watermarking [71,
72] uses different keys for watermark embedding and detec-
tion. Whereas a watermark is embedded using a private key,
its presence can be detected by a public key. In such schemes,
the knowledge of the public detection key must not enable
an adversary to remove the embedded watermark; unfortu-
nately, none of the proposed schemes is sufficiently robust
against malicious attacks [73]. Another approach is repre-
sented by zero-knowledge watermark detection.

Zero-knowledge watermark detection (ZKWD) uses a
cryptographic protocol to wrap a standard symmetric wa-
termark detection process. In general, a zero-knowledge wa-
termark detection algorithm is an interactive proof system
where a prover tries to convince a verifier that a digital con-
tent X′ is watermarked with a given watermark B without
disclosing B. In contrast to the standard watermark detector,
in ZKWD the verifier is given only properly encoded (or en-
crypted) versions of security-critical watermark parameters.
Depending on the particular protocol, the watermark code,
the watermarked object, a watermark key, or even the origi-
nal unmarked object is available in an encrypted form to the
verifier. The prover runs the zero-knowledge watermark de-
tector to demonstrate to the verifier that the encoded water-
mark is present in the object in question, without removing
the encoding. A protocol run will not leak any information
except for the unencoded inputs and the watermark presence
detection result.

Early approaches for zero-knowledge watermark detec-
tion used permutations to conceal both the watermark and
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Figure 8: The scheme of the Buyer Seller Protocol proposed in [66].

the object in which the watermark is to be detected [74]; the
protocol assures that the permuted watermark is detected in
the permuted content and that both the watermark and the
object are permuted in the same manner. Craver [75] pro-
posed to use ambiguity attacks as a central tool to construct
zero-knowledge detectors; such attacks allow to compute a
watermark that is detectable in a content but never has been
embedded there. To use ambiguity attacks in a secure detec-
tor, the real watermark is concealed within a number of fake
marks. The prover has to show that there is a valid watermark
in this list without revealing its position. Now, the adversary
(equipped solely with a watermark detector) cannot decide
which of the watermarks is not counterfeit. Removal of the
watermark is thus sufficiently more difficult.

Another proposal is to compute the watermark detec-
tion statistic in the encrypted domain (e.g., by using additive
homomorphic public-key encryption schemes or commit-
ments) and then use zero-knowledge proofs to convince the
verifier that the detection statistic exceeds a fixed threshold.
This approach was first proposed by Adelsbach and Sadeghi
[76], who use a homomorphic commitment scheme to com-
pute the detection statistic; the approach was later refined in
[77].

Adelsbach and Sadeghi [76] propose a zero-knowledge
protocol based on the Cox’s watermarking scheme. In con-
trast to the original algorithm, it is assumed that the water-
mark and DCT-coefficients are integers and not real numbers
(this can be achieved by appropriate quantization). More-
over, for efficiency reasons, the correlation computation in
(31) is replaced by the detection criterion:

C := (〈X′, W〉)2 − 〈X′, X′〉 · T2

:= (A)2 − B ≥ 0;
(37)

the latter detection criterion is equivalent to the original one,
provided that the factor A is positive.

The following zero-knowledge detection protocol has
been designed to allow the prover to prove to a verifier that
the watermark committed to in the commitment com(W) is
present in the watermarked content X′, without revealing any
information about W. In the protocol, the authors employ an
additively homomorphic commitment scheme (such as the
one proposed by Damgård and Fujisaki [78]). Let ppub, X′,

com(W), T be the common inputs of prover and verifier and
let psec be the private input of the prover. First, both prover
and verifier select the watermarked features X′ and compute
the value B of (37); the prover sends a commitment com(B)
to the verifier and opens it immediately, allowing him to ver-
ify that the opened commitment contains the same value B
he computed himself. Now both compute the commitment

com(A) =
M∏
i=1

com
(
wi
)x′i (38)

by taking advantage of the homomorphic property of the
commitment scheme. Subsequently, the prover proves in
zero-knowledge that A ≥ 0. Next, the prover computes the
value A2, sends a commitment com(A2) to the verifier, and
gives him a zero-knowledge proof to prove that com(A2) re-
ally contains the square of the value contained in com(A).
Being convinced that com(A2) really contains the correctly
computed value A2, the two parties compute the commit-
ment com(C) := com(A2)/com(B) on the value C. Fi-
nally, the prover proves to the verifier, with a proper zero-
knowledge protocol, that com(C) ≥ 0. If this proof is ac-
cepted, then the detection algorithm ends with true, other-
wise, with false.

While early protocols addressed only correlation-based
watermark detectors, the approach has recently be extended
to Gaussian maximum likelihood detectors [79] and Dither
modulation watermarks [80, 81].

5. CONCLUSION AND DISCUSSION

The availability of signal processing algorithms that work di-
rectly on the encrypted data would be of great help for appli-
cation scenarios where “valuable” signals must be produced,
processed, or exchanged in digital format. In this paper, we
have broadly referred to this new class of signal processing
techniques operating in the encrypted domain as signal pro-
cessing in the encrypted domain. We mainly review the state-
of-the-art, describing the necessary properties of the crypto-
graphic primitives and highlighting the limits of current so-
lutions that have an impact on processing in the encrypted
domain.
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Concerning the use of cryptographic primitives for sig-
nal processing in the encrypted domain, we can observe that
treating the digital content as a binary data is not realistic and
eliminates the possibility of further processing. Concerning
the basic encryption primitives that make processing in the
encrypted domain possible, for the particular case when it
is necessary to compress an encrypted signal, a possibility is
to resort to the theory of coding with side information; this
primitive, however, seems to be applicable only to this kind
of problem.

The general cryptographic tools that allow to process en-
crypted signals are homomorphic cryptosystems since they
allow performing linear computations on the encrypted data.
In order to implement necessary signal processing opera-
tions, it seems crucial to have an algebraic cryptosystem.
However, such a system does not exist and despite the fact
that there is no formal proof, it is highly believed that such
a system will be insecure due to preserving too much struc-
ture. Yet, homomorphic cryptosystems are the key compo-
nents in signal processing in the encrypted domain. Another
property, important for signal processing in the encrypted
domain, is probabilistic encryption: since signal samples are
usually 8-bit or 16-bit in length, encrypting such values with
a deterministic cryptosystem will result in reoccurring en-
crypted values which significantly reduces the search space
for brute-force attacks. A probabilistic scheme, which does
not encrypt two equal plain texts into the same cipher text,
eliminates such an issue. However, once the data is en-
crypted, the probabilistic encryption makes it impossible to
check if the encrypted value represents a valid input for the
purposes of the subsequent processing. Similarly, the out-
put of a function that is computed with encrypted data may
need to be compared with another value. In such situations,
cryptography provides a solution known as zero-knowledge
proofs. Moreover, when nonlinear function needs to be com-
puted, homomorphic encryption cannot help; in such a case,
it is possible to resort to interactive protocols (e.g., the secure
multiparty computation). The limit of these protocols is that
a general solution is infeasible for situations where the parties
own huge quantities of data or the functions to be evaluated
are complex, as it happens in signal processing scenarios.

Though the possibility of processing encrypted data has
been advanced several years ago, processing encrypted sig-
nals poses some new problems due to the peculiarities of
signals with respect to other classes of data more commonly
encountered in the cryptographic literature, for example, al-
phanumeric strings or bit sequences. One property of sig-
nals is that in many signal processing applications, there is
interest on the way the signal varies with time rather than
the single values it assumes. Moreover, the arithmetic used
to represent the signal samples has to be carefully taken into
account. If the signal samples are represented by means of
fixed-point arithmetic, we need to ensure that no overflow
occurs; for signal processing in the encrypted domain, it is
necessary that such a condition is ensured a priori by care-
fully constraining the properties of the signals we operate on
and the type and number of operations we want to perform
on them. Moreover, keeping the distinction between the in-
teger and the fractional part of a number is a difficult task,

given that, once again, it calls for the possibility of comparing
encrypted numbers. If the signals are represented by means
of floating point arithmetic, working in the encrypted do-
main is a very difficult task due to the necessity of imple-
menting operations such as comparisons and right shifts in
the encrypted domain, for which efficient (noninteractive)
solutions are not known yet.
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The performance of image and video analysis algorithms
for content understanding has improved considerably over
the last decade and their practical applications are already
appearing in large-scale professional multimedia databases.
However, the emergence and growing popularity of social
networks and Web 2.0 applications, coupled with the ubiq-
uity of affordable media capture, has recently stimulated
huge growth in the amount of personal content available.
This content brings very different challenges compared to
professionally authored content: it is unstructured (i.e., it
needs not conform to a generally accepted high-level syntax),
typically complementary sources are available when it is cap-
tured or published, and it features the Şuser-in-the-loopŤ at
all stages of the content life-cycle (capture, editing, publish-
ing, and sharing). To date, user provided metadata, tagging,
rating and so on are typically used to index content in such
environments. Automated analysis has not been widely de-
ployed yet, as research is needed to adapt existing approaches
to address these new challenges.

Research directions such as multimodal fusion, collabora-
tive computing, using location or acquisition metadata, per-
sonal and social context, tags, and other contextual informa-
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the Web has become a massive source of multimedia content,
the research community responded by developing automated
methods that collect and organize ground truth collections
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are now required for social content. The challenge will be to
demonstrate that such methods can provide a more powerful
experience for the user, generate awareness, and pave the way
for innovative future applications.
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After many years of exciting research, the field of multimedia
information retrieval (MIR) has become mature enough to
enter a new development phase—the phase in which MIR
technology is made ready to get adopted in practical so-
lutions and realistic application scenarios. High users’ ex-
pectations in such scenarios require high dependability of
MIR systems. For example, in view of the paradigm “get-
ting the content I like, anytime and anyplace” the service
of consumer-oriented MIR solutions (e.g., a PVR, mobile
video, music retrieval, web search) will need to be at least
as dependable as turning a TV set on and off. Dependability
plays even a more critical role in automated surveillance so-
lutions relying on MIR technology to analyze recorded scenes
and events and alert the authorities when necessary.

This special issue addresses the dependability of those crit-
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Semantic inference stands for the theories and algorithms de-
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understanding of the processes underlying semantic concept
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tributed and collaborative intelligence (e.g., a social/P2P net-
work) and let them benefit from the processes taking place in
such a network (e.g., tagging, collaborative filtering).
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original contributions that reach beyond conventional ideas
and approaches and make substantial steps towards depend-
able, practically deployable semantic inference theories and
algorithms.
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tions (e.g., tagging, interaction with content) and
user/device collaboration (e.g., in social/P2P net-
works)
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The growing diffusion of new services, like mobile television
and video communications, based on a variety of transmis-
sion platforms (3G, WiMax, DVB-S/T/H, DMB, DTMB, In-
ternet, etc.), emphasizes the need of advanced video coding
techniques able to meet the requirements of both the receiv-
ing devices and the transmission networks. In this context,
scalable and layered coding techniques represent a promising
solution when aimed at enlarging the set of potential devices
capable of receiving video content. Video encoders’ configu-
ration must be tailored to the target devices and services that
range from high definition for powerful high-performance
home receivers to video coding for mobile handheld devices.
Encoder profiles and levels need to be tuned and properly
configured to get the best trade-off between resulting quality
and data rate, in such a way as to address the specific require-
ments of the delivery infrastructure. As a consequence, it is
possible to choose from the entire set of functionalities of the
same video coding standard in order to provide the best per-
formance for a specified service.

This special issue aims at promoting state-of-the-art re-
search contributions from all research areas either directly
involved in or contributing to improving the issues related
to video coding technologies for broadcast applications.

Topics of interest include (but are not limited to):

• Video codec design methodology and architecture for
broadcast applications

• Advanced video compression techniques for mobile
broadcasting

• Content-based and object-based video coding
• Layered and scalable video coding for fixed and mobile

broadcasting
• Mobile and wireless video coding
• Video trans-coding/trans-rating methods for broad-

cast applications
• Video rate control techniques
• Human visual system in distortion metrics, activity

measure methods in video sequences
• High definition video coding
• Distributed video coding in broadcast applications
• Multi-view coding-/-3D video coding

• Service enhancement through “cross-layer” optimisa-
tion

• Error resilience, intelligent robustness enhancement,
and error concealment for broadcast applications
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Over the last years, many journal articles appeared on the
principles, analysis, and design of active and active integrated
antennas (AAs and AIAs). An AA is a single system compris-
ing both a radiating element and one or more active compo-
nents which are tightly integrated. This gives clear advantages
in terms of costs, dimensions, and efficiency. In the case of an
AIA, both the active device and the radiator are integrated on
the same substrate. Both options lead to very compact, low-
loss, flexible antennas, and this is very important especially
at high frequencies, such as those typical of a satellite link.
As microwave integrated-circuit and the microwave mono-
lithic integrated-circuit technologies have ripened, AA and
AIA applications have become more and more interesting,
not only at a scientific level but also from a commercial point
of view, up to the point that they have recently been applied
to phased array antennas on board moving vehicles for satel-
lite broadband communication systems.

The goal of this special issue it to present the most recent
developments and researches in this field, with particular at-
tention to space-borne applications, as well as to enhance the
state of the art and show how AAs and AIAs can meet the
challenge of the XXI century telecommunications applica-
tions.

Topics of interest include, but are not limited to:
• Active (integrated) antenna design, analysis, and sim-

ulation techniques
• Active (integrated) antenna applications in arrays,

retrodirective arrays and discrete lenses
• Millimeter-wave active (integrated) antennas

Authors should follow International Journal of Antennas
and Propagation manuscript format described at the jour-
nal site http://www.hindawi.com/journals/ijap/. Prospective
authors should submit an electronic copy of their complete
manuscript through th journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
timetable:

Manuscript Due September 1, 2008

First Round of Reviews December 1, 2008

Publication Date March 1, 2009

Guest Editors

Stefano Selleri, Department of Electronics and
Telecommunications, University of Florence,
Via C. Lombroso 6/17, 50137 Florence, Italy;
stefano.selleri@unifi.it

Giovanni Toso, European Space Rechearch and Technology
Center (ESTEC), European Space Agency (ESA), Keplerlaan
1, PB 299, 2200 AG Noordwijk, The Netherlands;
giovanni.toso@esa.int

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/ijap/
http://mts.hindawi.com/
mailto:stefano.selleri@unifi.it
mailto:giovanni.toso@esa.int

	Introduction
	Encryption Meets Signal Processing
	Introduction
	Cryptographic primitives
	Homomorphic cryptosystems
	Zero-knowledge proof protocols
	Commitment schemes
	Secure multiparty computation

	Importance of security requirements
	Compression of encrypted signals

	Analysis and Retrieval of Content
	Clustering
	K-means clustering algorithm
	Secure K-means clustering algorithm

	Recommender systems
	Recommendations by partial SVD on encrypted preferences
	Randomized perturbation to protect preferences


	Content Protection
	Watermarking of content
	Watermarking model
	Watermarking algorithm

	Client-side watermark embedding
	Buyer seller protocols
	Secure watermark detection

	Conclusion and Discussion
	Acknowledgments
	REFERENCES
	1Call for Papers4pt
	Guest Editors
	1Call for Papers2pt
	Guest Editors
	1Call for Papers-4pt
	Guest Editors
	1Call for Papers*4pt
	Guest Editors-.5pt
	1Call for Papers4pt
	Guest Editors
	1Call for Papers
	Guest Editors

