
Anonymously Sharing Flickr Pictures

with Facebook Friends

Jan Camenisch Günter Karjoth Gregory Neven
Franz-Stefan Preiss

IBM Research – Zurich

{jca, nev, frp}@zurich.ibm.com, karjoth@acm.org

Abstract

Many Internet users today use an electronic social network service (SNS) to share data
with their friends. Most SNSs let users restrict access to their shared data, e.g., to particular
groups of friends, or to users satisfying other criteria based on their attributes or relationships.
Usually, however, such access control restrictions can only be applied to resources hosted on
the SNS itself. In this paper, we present protocols to enable SNS users to protect access to
resources that are hosted on external service providers (SPs). Our mechanisms preserve the
users’ privacy in the sense that (1) the SP does not learn the SNS-identities of users that share
or access the resource, nor does it learn anything about the access policy that protects it, (2)
the SNS does not obtain any information about the resource, and in particular, does not obtain
a link to it, and (3) the SP cannot change the policy set by the owner of the resource, or test
the policy on users who never requested access to the resource. We give formal definitions of
these security requirements and present a cryptographic protocol based on group signatures
that provably fulfills them. We also discuss to what extent our requirements can be fulfilled
using the standard OAuth authorization protocol while making only minor changes to the SNS
infrastructure.

1 Introduction

Many individuals in today’s society maintain profiles in one or more electronic social network
services (SNSs) such as Facebook, LinkedIn, or Google+. Such SNSs allow their users to establish
friend relationships with other users of the same SNS. Many SNSs also allow users to categorize their
friends into groups or circles (e.g., best friends, work colleagues, family). These can then be used to
restrict access to certain profile data or media (such as status messages and pictures) to members of
a particular group. However, users cannot utilize their friend relationships and their categorizations
that they established on one SNS to control access to their resources that are hosted on another
SNS. Instead, they have to maintain the same relationships and groups on all SNSs they use. This
is a major issue because the establishment and maintenance of friend relationships and groups is a
continuous and very time-consuming process, and also entails a lock-in effect that becomes stronger
the more friends a user maintains. For example, consider a user Alice who has a Facebook profile
with numerous carefully selected friends as well as several well-maintained friend groups. When
Alice wants to make use of another SNS, say Flickr, to share her pictures of the latest party with

1

SNS

Service Provider

Owner Requester

1. resource

2. set policy

3. re
quest

4. check policy

5. re
so

urce

Figure 1: Interaction diagram

her Facebook best friends group (and only with them), all her best friends on Facebook need to
join Flickr, Alice subsequently needs to accept them as friends and add them to her best friends
group on Flickr so that they and only they can look at the picture.

In this paper we are concerned with schemes that spare Alice and her friends this tedious
process and allow her to share her pictures securely and easily. In particular, we consider the
scenario sketched in Figure 1. There are a number of users who are all registered with a social
network service SN , such as Facebook, where they have accounts. On SN , users manage their
friend relationships and groups. SN also knows other information about its users, which might
be relevant to our scenario. A user Ui owns a certain resource (e.g., a collection of pictures) and
wants to share it with her friends by depositing it (Step 1 in Figure 1) with a service provider SP
such as Flickr. Because Ui doesn’t want to share the resource with all of her friends, but only those
who satisfy certain criteria, she creates an access policy plc describing who is allowed access to the
resource and who is not. She then associates the access control policy (or a suitable encryption
thereof) with the resource at SP or at SN , depending on which of our two schemes is used (Step 2).
As Ui manages her friends on SN , the policy will be evaluated by SN , but it will be enforced by
SP. We do not make assumptions about the format of the policy itself, but consider the details of
the specification and the evaluation of the policy outside of the scope of this paper. To preserve
privacy, we want that SP learns neither the policy nor the identities that Ui or her friends have
with SN . More precisely, if a user Uj requests access to the resource (Step 3), then SP, SN , and Uj
interact to determine whether Uj should be granted access (Step 4). In this process, SP only learns
whether or not Uj satisfies the policy plc as evaluated by SN . In this basic scenario, we assume
for simplicity of our exposition that users are known under their accounts with SN ; whether they
also have accounts with SP is not relevant to our model. Our scheme can easily be extended to
handle several resource hosting sites. How Alice informs her friends that she has made the resource
available on SP is also out of scope and actually an orthogonal issue: she could use any method
she prefers, such as sending an email, posting a link on her blog or on her wall on SN , or perhaps
her friends just regularly visit her page on SP.

Ignoring the privacy requirements, one possible solution for the access control problem above
is that Alice allows SP to query her SN profile data including her friend list. To this end, Alice
could generate an OAuth token as to authorize SP to make the query on SN . If SN is Facebook,
this solution could indeed be implemented by a service provider SP already today using the APIs

2

that Facebook offers. A major drawback of such a naive solution, however, is that SP is able to
make all kinds of queries to SN . Even if the OAuth token is somehow bound to the access policy
plc, SP will still learn the user names of Alice and her friends who accesses a resource. Thus, such
a solution does not protect the privacy of Alice and her friends. Carminati and Ferrari pointed out
that “relationships are in general sensitive resources whose privacy should be properly guaranteed
even if they are instrumental to perform access control” [9].

Our Contributions We present the first solutions that enable SNS users to share their externally
hosted resources with SNS friends while retaining a maximum level of privacy with respect to
the service provider and the social network. To this end, we first present security definitions
of a SNS-based access control scheme. Second, we provide a concrete realization based on group
signatures [11], public key encryption with labels [23], commitment schemes, and one-time signature
schemes [19] and prove our scheme to be secure, i.e., to meet our security definitions. Finally, we
discuss how far one could meet our security definitions with implementations based on OAuth, in
particular, what properties can be achieved while keeping the changes to existing systems as small
as possible.

We believe that our schemes offer attractive features and argue that social networks would benefit
from its implementation. In particular, they enable a centralization of friend relationship data and
friend group data in a single SNS and reusing these relationships at other SNSs or external service
providers for access control. This makes the maintenance of relationships much easier because
the profile data must be maintained only in a single SNS rather than in multiple systems. Also,
maintaining the profile data such as friend relationships and groups in the SNS ensures that access
decisions that depend on this profile data are up to date. Further, a service provider that offers this
kind of access control w.r.t. an external SNS makes its use more attractive as users no longer need
to maintain new friend groups on it and does not require their friends to create their own accounts
and profiles with the service provider as well.

The main feature of our scheme, however, is that it protects the privacy of the users. The service
provider that controls access to the resources it hosts based on profile information maintained in
a SNS does not learn the SNS identities of the profile owners or access requesters. To avoid
the involved re-establishment of friend relationships and re-definition of friend groups in a newly
joined SNS, users often resort to giving up their privacy by making their entire profile information
publicly visible. As access to profile information can with our scheme easily be controlled based on
relationships established in other SNSs, there is no longer the obstacle of re-establishing relationships
and groups and thus no longer the need to resort to making all profile information public.

Of course, an SNS might want to internalize the functionality offered by possible competing
service providers rather than implementing a scheme such as the one we propose. However, we
believe that the latter is more attractive because many SNSs offer identity provider services to
other sites already today.

Related Work There are many proposals to improve the access control systems of SNSs but focus
has been on empowering users to control access within an SNS. Beyond marking data to be public,
private, or accessible by direct contacts, access control systems deployed today provide different
notions of personal relationships: friends, friends-of-friends, and circles for example. However,
access control is restricted to the community of the Social Network; i.e., which members of the SNS
can access what data stored within the SNS.

3

In this paper, we contribute to two of the protection requirements postulated by Gates [16] to
handle the social networking capabilities provided by Web 2.0 technologies.

The first requirement states that access control must be relationship-based ; i.e., the control of
access to particular data should be based on the data owner’s personal relationship to the recipient.
Under the term Relationship-Based Access Control, a number of models have been developed.
In [14] and subsequent work, Fong presents a model and language to express binary relations
between the resource owner and the resource accessor. The model addresses the contextual nature
of relationships and facilitates the composition of policies. Our protocols complement this work
by providing privacy-preserving mechanisms to retrieve binary relationships at the time of policy
evaluation.

Gates’ second protection requirement states that there must be interoperability between the
multiple sites; i.e., access control policies and relationship groups defined by the user should follow
the user. To our knowledge, we are the first to propose a solution that provides an easy access to
relationship data such that access control at the service provider can use relationship information
maintained at the SNS in a privacy-friendly way.

Hu, Ahn, and Jorgensen proposed and implemented a solution for collaborative management of
shared data [18]. Using multiparty policy evaluation techniques, data access is under supervision
of the SNS controller.

Carminati and Ferrari pointed out that disclosing a relationship always means an exposure of
personal information [9]. By hiding the identities of users to SP, our protocols provide a privacy-
aware access control mechanism, able to enforce relationship-based access control over multiple
SNSs but ensuring relationship privacy.

Carminati et al. [10] make use of a semi-decentralized architecture, where the information con-
cerning users’ relationships is encoded into certificates, stored by a certificate server. The access
control is enforced by the owner, who also plays the role of SP, and learns the identity of the re-
quester in the process. In our approach, a selected SNS takes over the role of the certificate server,
but the SP does not learn the identities of the involved users.

2 SNS-Based Access Control

The participants in an SNS-based access control system are a social network SN where users
manage their profiles and friends lists, a number of users U1, . . . ,Un who are registered with SN ,
and a service provider SP which users use to host and share resources with other users. Users may
or may not have accounts with SP; since all access control decisions are taken based on the users’
identities with SN , this is irrelevant for our system. For simplicity, we consider i to be the user
name of user Ui with SN .

In the following, we first describe the high-level idea of our system, then we provide formal
definitions of its algorithms, and finally we specify our security requirements.

2.1 High-Level Idea

To setup the system, SN runs a key generation protocol and publishes the system parameters of
the scheme and SN ’s public key. To be able to share or to access a resource, a user Ui needs
to first run a registration protocol with the social network SN from which the user obtains some
registration information ski (the user’s secret key).

4

Next, when a user Ui (owner of the resource) wants to deposit some resource with description
res (this could for instance be the resource URL), she uses ski and res to generate what we call
an owner token ot for some access control policy plc. Ui then deposits the owner token and the
resource with SP, who checks the validity of the token, and then she sends res by some adequate
means to her friends (cf. Section 1).

Now, when a user Uj (requester of the resource) wants to access the resource with description
res, he generates a requester token rt for the resource res using his skj and sends rt to SP as part
of the request for the resource. SP uses ot and rt to generate what we call a linking token lt
proving that the ot and rt relate to the same resource, and then sends the triple (ot, rt, lt) to SN .
The linking token will ensure to SN that the requester token rt is indeed requesting access to the
resource for which ot defines the policy in such a way that SN does not learn information about
the resource. The generation of the linking token also includes a verification of the requester token.

Given these three tokens, SN can extract the policy plc and the user’s identities Ui and Uj .
Thus, in some sense, by generating the requester and the owner tokens, Ui and Uj authorize SP to
query SN for the evaluation of the policy plc w.r.t. their accounts with SN . Next, SN evaluates
whether or not Uj satisfies the policy plc w.r.t. Ui and sends the result (yes or no) back to SP, who
will allow or deny access to the resource based on the result.

To protect the privacy of users, we want that SP and SN do not learn more information than
strictly necessary, i.e., SN should not learn any information about the resource, while SP doesn’t
learn the users’ identities with SN nor any information about the policy. For security, we want
that users who do not satisfy a policy cannot forge requester tokens that will give them access, and
that the service provider SP cannot forge owner tokens to evaluate policies w.r.t. Ui that were not
created by Ui.

As mentioned already, we also want that owner tokens and requester tokens are somehow
“linked” to the resource, so that they cannot be reused to protect or obtain access to a differ-
ent resource. We want SN to be able to check that the owner token and requester token were
created for the same resource, but at the same time we don’t want SN to learn anything about res
itself. We address these seemingly contradicting requirements by letting users send to SP, along
with each owner or requester token, also linking information oli or rli, respectively. The service
provider doesn’t forward oli and rli to SN , but instead generates a linking token lt from oli and rli
that essentially strips all information about res itself, but still allows SN to verify that ot and rt
were indeed created for the same resource.

2.2 Definitions

An SNS-based access control system consists of five procedures: Setup, Register, OTGen, OTVf,
RTGen, LTGen, and Extract. These procedures are defined as follows:

Setup A probabilistic algorithm to generate the keys for SN . On input of a security parameter `,
the algorithm outputs the secret skSN and public key pkSN .

Register A probabilistic protocol between a user Ui and SN . The user’s input is (i, pkSN) and
SN ’s input is (i, skSN). The user’s output is ski. We assume that the protocol will fail for an index
i if it was already run for this index.

OTGen A probabilistic algorithm allowing a user Ui to generate an owner token ot together with
linking information oli for resource res ∈ {0, 1}∗ stored by SP with access control policy plc ∈ {0, 1}∗
to be verified by SN . They are computed as (ot, oli)←R OTGen(pkSN , ski, plc, res).

5

OTVf A deterministic algorithm allowing SP to verify an owner token ot and its linking information
oli w.r.t. res and SN , i.e., 0/1← OTVf(pkSN , ot, oli, res).

RTGen A probabilistic algorithm for allowing a user Ui to generate a requester token rt to-
gether with linking information rli for a resource res hosted by SP by computing (rt, rli) ←R

RTGen(pkSN , ski, res).

LTGen A possibly probabilistic algorithm that combines the policy linking information oli and
access linking information rli into a linking token lt, i.e., lt ←R LTGen(pkSN , ot, oli, rt, rli, res). It
returns lt = ⊥ to indicate failure.

Extract A deterministic algorithm for allowing SN to extract the user identities and policies associ-
ated with a triple of a policy, an access, and a linking token, i.e., (i, j, plc)← Extract(skSN , ot, rt, lt).
It returns ⊥ if the tokens are malformed. SN can subsequently check whether users i and j satisfy
the policy plc. Note that this algorithm does not require res as input. In fact, we will require that
ot, rt, lt do not leak information about res (cf. Section 2.3).

2.3 Security Requirements

With respect to security and privacy, we require that our system fulfills the following properties:

Correctness We require that if all parties honestly run the protocols then the owner and re-
quester tokens are valid and SN will be able to recover the policy and the identities of the users
who generated the owner and requester tokens, respectively. That is, for all registered users Ui
and Uj with respective secret keys ski and skj and for all plc ∈ {0, 1}∗, whenever (ot, oli) ←R

OTGen(pkSN , ski, plc, res), (rt, rli)←R RTGen(pkSN , skj , res), and lt←R LTGen(pkSN , ot, oli, rt, rli, res),
we require that 1 = OTVf(pkSN , ot, oli, res), that lt 6= ⊥, and that (i, j, plc) = Extract(skSN , ot, rt, lt)
for all random choices of all the involved algorithms.

Anonymity We require that SP cannot tell which user identity registered with SN created an
owner or requester token, or even whether two owner or requester tokens were generated by the
same or by different users. We also require that the owner token leaks no information about the
policy to SP. More formally, we require that an adversary A (e.g., a malicious SP) cannot win the
following game with probability better than 1/2.

1. Run (skSN , pkSN)← Setup(`) and send pkSN to A.

2. Run sk1 ← Register(1, pkSN)(1, skSN) as well as sk2 ← Register(2, pkSN)(2, skSN).

3. Allow A to repeatedly query any of the following oracles:

(a) Register with SN as user Ui with 3 ≤ i ≤ n.

(b) Obtain an owner token ot with linking information oli from user U1 or U2 for some plc and
res.

(c) Obtain a requester token rt with linking information rli from user U1 or U2 for some res.

(d) Obtain (i, j, plc)← Extract(skSN , ot, rt, lt) for any ot, rt, lt.

4. Upon receiving two equal-length policies plc∗1, plc
∗
2 and resource res∗ fromA, choose a random bit b

and send (ot∗, oli∗)←R OTGen(pkSN , sk1+b, plc
∗
1+b, res) and (rt∗, rli∗)←R RTGen(pkSN , sk2−b, res)

to A.

6

5. Allow A to continue querying the above oracles, except that it cannot make queries to the Extract
oracle involving ot = ot∗ or rt = rt∗.

6. Obtain a bit b′ from A, who wins if b = b′.

Resource Secrecy We require that the owner token, requester token, and linking token do not
leak any information to SN about the resource res for which the tokens were generated. This is
formalized as follows.

1. Run (skSN , pkSN)←Setup(`) and send (pkSN , skSN) to A.

2. Obtain two equal-length resources res0, res1 and a policy plc from the adversary A.

3. Interact with A in two Register protocols to obtain secret keys sk1 and sk2 for users U1 and U2,
respectively.

4. Choose a random bit b, compute (ot∗, oli∗)←R OTGen(pkSN , sk1, plc, resb), (rt∗, rli∗)←R RTGen(
pkSN , sk2, resb), and lt∗ ←R LTGen(pkSN , ot

∗, oli∗, rt∗, rli∗, resb) and send (ot∗, rt∗, lt∗) to A.

5. If A outputs b′ = b then it wins the game.

Token Unforgeability We require that a cheating user cannot get access if she does not satisfy
the policy. At the same time, we want to prevent a cheating service provider SP from performing
more policy evaluations than those that are strictly required to make its access decisions. This
means that SP should not be able to modify the policy created by the resource owner, to evaluate
policies on users that never requested access to any resource at all, nor to evaluate some policy on
a user who never requested access to a resource to which this policy was associated. Technically,
these restrictions all translate into the unforgeability of owner and requester tokens pointing to
honest users when extracted through the Extract algorithm.

More formally, we require that no adversary A (e.g., a malicious SP) can win the following
game with non-negligible probability.

1. Run (skSN , pkSN)← Setup(`) and send pkSN to A.

2. Run the protocols sk1 ← Register(1, pkSN)(1, skSN) as well as sk2 ← Register(2, pkSN)(2, skSN).

3. Allow A to repeatedly perform any of the steps below:

(a) Register with SN as user Ui with 3 ≤ i ≤ n.

(b) Obtain an owner token ot with linking information oli from user U1 or U2 for some plc and
res.

(c) Obtain a requester token and linking information rli from user U1 or U2 for some res.

(d) Obtain (i, j, plc)← Extract(skSN , ot, rt, lt) for any ot, rt, and lt.

4. When A eventually outputs (ot′, rt′, lt′), check that (i, j, plc′)← Extract(skSN , ot
′, rt′, lt′) doesn’t

return ⊥. A wins the game if at least one of the following conditions is satisfied:

(a) i = 1 and A never queried an owner token from U1 for policy plc′.

(b) j = 2 and A never queried a requester token from U2.

(c) i = 1, j = 2, and there does not exist a resource res′ such that A queried an owner token
from U1 for plc′ and res′ and A queried a requester token for U2 for res′.

7

Provider Security We want to ensure that no adversary is able to produce tokens that pass
the owner token verification algorithm and that SP can use to create a valid linking token, but for
which Extract fails. More formally, we require that no adversary A can win the following game with
non-negligible probability.

1. Run (skSN , pkSN)← Setup(`) and send pkSN to A.

2. Allow A to repeatedly perform any of the steps below:

(a) Register with SN as user Ui with 1 ≤ i ≤ n.

(b) Obtain (i, j, plc)← Extract(skSN , ot, rt, lt) for any ot, rt, lt.

3. When A outputs (ot′, oli′, rt′, rli′, res′, it wins the game if 1 = OTVf(pkSN , ot
′, oli′, res′), if lt′ 6= ⊥

for lt′ ←R LTGen(pkSN , ot
′, oli′, rt′, rli′, res′), and if ⊥ = Extract(skSN , ot

′, rt′, lt′).

3 Group Signature Construction

Our main construction of an SNS-based access control scheme is based on group signatures, which
allow a group of signers to anonymously sign messages in the name of the group such that only
a group manager can figure out the exact signer. The role of the group manager is played by
SN , who gives out a signing key to each user that registers at SN . The owner of a resource Ui
attaches an access policy to the resource by encrypting the policy under SN ’s public key, creating a
commitment to an identifier of the resource res, and computing a group signature on the ciphertext
and the commitment. To make sure that the ciphertext cannot be separated from the owner token
and used in combination with another group signature, we use known techniques involving one-time
signatures [20, 8] to bind the ciphertext to the token. The owner token contains the group signature,
the ciphertext, the commitment, a one-time signature on all three of these, and the public key to
the one-time signature scheme; the linking information consists of the opening information to the
commitment. When user Uj requests access to a resource, he also commits to the resource and signs
the commitment using his group signing key. The service provider SP verifies all signatures in the
tokens and checks that both commitments open to the resource identifier res. It then creates the
linking token by computing a non-interactive zero-knowledge proof [5] that the commitments in the
owner token and in the requester token open to the same resource. SN first verifies all signatures
and the zero-knowledge proof, extracts the user identities i, j by opening the group signatures, and
decrypts the access policy. It can then evaluate whether Uj satisfies the policy with respect to Ui
and send the access decision back to SP.

We now discuss the ingredients to our scheme and then proceed to present our main construction.

3.1 Preliminaries

3.1.1 Group Signatures

Group signatures [11] allow a signer to anonymously sign messages in name of a whole group of
users, who obtain their secret signing keys from a group manager. The group manager is responsible
for the initialization of the group and for the admission of group members. Anyone can verify that
the message was signed by a valid group member using the group’s public key, but only the group
manager (or a dedicated opener) can recover the exact identity of the signer.

Depending on whether the signing keys are pre-computed during the initialization phase for all
users, or dynamically generated whenever a new user joins the group, a group signature scheme is

8

called static [1] or dynamic [3]. For simplicity, we describe our construction in terms of static group
signatures, but our constructions and results easily extend to the dynamic case.

A group signature scheme consists of the following algorithms:

GKg A probabilistic algorithm that the group manager uses on input of a security parameter `
and the number of users n to generate the group public key gpk, signing keys gsk1, . . . , gskn, and
the opening key ok. It publishes gpk, hands signing key gski to user Ui, and keeps ok secret.

GSign A signing algorithm that user Ui runs on input of a signing key gski and a message msg to
create a group signature σ.

GVerify A deterministic verification algorithm that the verifier runs on input of the group public
key gpk, a message msg and signature σ and returns one if the signature is valid and returns zero
otherwise.

GOpen An opening algorithm that on input of the opening key ok, a message msg and a signature
σ, returns the index i ∈ {1, . . . , n} of the user who created the signature or ⊥ to indicate failure.

Correctness requires that for all `, n, i ∈ N and for all msg ∈ {0, 1}∗ we have GVerify(gpk,msg,
GSign(gski,msg)) = 1 and GOpen(ok,msg,GSign(gski,msg)) = i with probability one when (gpk,
gsk1, . . . , gskn, ok)← GKg(`, n).

Security of group signature schemes consists of two properties, namely anonymity and trace-
ability. Anonymity essentially guarantees that nobody except the group manager can tell which
signer created a particular signature. More formally, it requires that no adversary A can win the
following game with probability non-negligibly (in the security parameter `) higher than 1/2:

1. Run (gpk, gsk1, . . . , gskn, ok) ← GKg(`, n) and give gpk as well as all signing keys gsk1, . . . , gskn
to A.

2. Allow A to make repeated queries to an opening oracle GOpen(ok, ·, ·).
3. When A outputs a message msg and user indices i0, i1 ∈ {1, . . . , n}, choose a random bit b ←
{0, 1}, compute σ ← GSign(gski,msg), give σ to A and continue to run A with access to the
opening oracle.

4. A wins the game if it outputs a bit b′ = b and it never queried the opening oracle on msg, σ.

Traceability guarantees that a valid group signature can always be traced back to a user whose
signing key was used in the creation of the group signature. This implies unforgeability, since the
ability to create a valid signature without access to any signing keys would violate traceability. This
property is more formally defined through the following game:

1. Run (gpk, gsk1, . . . , gskn, ok)← GKg(`, n) and give gpk as well as ok to A.

2. Allow A to repeatedly query a key oracle that on input of i ∈ {1, . . . , n} returns gski and a
signing oracle GSign(gsk·, ·).

3. A wins the game if it outputs a message msg and signature σ so that GVerify(gpk,msg, σ) = 1
and either GOpen(ok,msg, σ) = ⊥, or GOpen(ok,msg, σ) = i so that A never queried the key
oracle on i nor the signing oracle on i,msg.

3.1.2 Public-Key Encryption with Labels

Public-key encryption with labels [23] is similar to standard public-key encryption, but one can bind
a label to a ciphertext in a non-malleable way. Labels can be added to any standard public-key

9

encryption scheme by appending the label to the message, but many schemes offer more efficient
instantiations. A scheme consists of a key generation algorithm EKg that on input of a security
parameter ` generates a public encryption key epk and corresponding secret decryption key esk; an
encryption algorithm Enc that on input of epk, a message msg and a label λ outputs a ciphertext c;
and a decryption algorithm Dec that on input of esk, λ and c outputs msg or ⊥ to indicate failure.
Correctness requires that Dec(esk, λ,Enc(epk,msg, λ)) = msg with probability one for any key pair
(epk, esk)← EKg(`), any ` ∈ N and any msg, λ ∈ {0, 1}∗.

We use the standard security notion of indistinguishability under adaptive chosen-ciphertext
attack (IND-CCA2) where the adversary A is given the encryption key epk and adaptive access
to a decryption oracle Dec(esk, ·, ·). When A outputs a label λ∗ and two equal-length messages
msg∗0,msg∗1, it is given c∗ ← Enc(pk,msg∗b , λ

∗) for a random bit b ∈ {0, 1}. The adversary wins the
game if he outputs b′ = b without querying (λ∗, c∗) to the decryption oracle.

3.1.3 One-Time Signature Schemes

A one-time signature scheme consists of three algorithms (OTKg,OTSign,OTVerify) where OTKg,
on input of a security parameter `, generates a public verification key otpk and a corresponding
secret signing key otsk; OTSign takes as input otsk and a message msg to produce a signature ots;
and OTVerify outputs a bit indicating whether a given signature ots is valid with respect to public
key otpk and message msg. Correctness requires that OTVerify(otpk,msg,OTSign(otsk,msg)) = 1
with probability one whenever (otpk, otsk) ←R OTKg(`) for all ` ∈ N and msg ∈ {0, 1}∗. The
scheme is said to be strongly one-time unforgeable if no adversary running in time polynomial in `
can, on input of otpk and after a single query msg to a signing oracle OTSign(otsk, ·) that returns ots,
produce a forgery (msg′, ots′) such that OTVerify(otpk,msg′, ots′) = 1 and (msg′, σ′) 6= (msg, ots).
Any (multiple-time) signature scheme that is strongly unforgeable under chosen-message attack is
also a one-time strongly unforgeable scheme, but more efficient constructions exist [19].

3.1.4 Commitments with Equality Proofs

A commitment scheme consists of a parameter generation algorithm CPGen that, on input of security
parameter `, returns parameters cpars; a committing algorithm Commit that, on input of cpars and
a message msg, returns a commitment cmt together with opening op; and an opening algorithm
COpen that, on input of cpars, cmt, msg, and op, outputs a bit indicating whether cmt is a valid
commitment to msg.

Security of commitment schemes consists of the hiding and the binding properties. It is hiding
if no adversary A can, with non-negligible probability, on input of cpars generate two messages
msg0,msg1, receive a commitment cmt∗ of msgb for a random bit b, and output b′ = b. The binding
property requires that no adversary A can output a commitment that opens correctly to two
different messages, i.e., on input of cpars, output a commitment cmt, two messages msg0 6= msg1,
and opening information op0, op1 such that COpen(cmt,msg0, op0) = COpen(cmt,msg1, op1) = 1.

We also need a non-interactive zero-knowledge proof of knowledge [5] (NIZK PoK) that two com-
mitments cmt1, cmt2 open to the same message, i.e., π ←R NIZK{(msg, op1, op2) : COpen(cpars,
cmt1,msg, op1) = COpen(cpars, cmt2,msg, op2) = 1}. The proof can be verified using cpars, cmt1,
cmt2. The proof system must be (1) complete, meaning that the verification algorithm accepts any
honestly generated proof, (2) zero knowledge, meaning that there exists a zero-knowledge simulator
that produces a valid proof for any two commitments cmt1, cmt2 without knowing the witnesses
msg, op1, op1, and (3) a proof of knowledge, meaning that for any adversary A producing a proof

10

π for cmt1, cmt2, there exists an extractor that, given black-box access to A, recovers msg, op1, op2
such that COpen(cpars, cmt1,msg, op1) = COpen(cpars, cmt2,msg, op2) = 1.

A well-known commitment scheme is due to Pedersen [21]. The parameters contain the descrip-
tion of a cyclic group G of prime order p and two random generators g, h. To commit to a message
msg, one chooses op←R Zp and computes cmt = gmsghop. To verify the opening of a commitment,
one simply recomputes cmt from msg, op. The Pedersen scheme is unconditionally hiding and is
binding under the discrete logarithm assumption in G. One can obtain a NIZK proof of knowledge
NIZK{(msg, op1, op2) : COpen(cpars, cmt1, res, op1) = 1 ∧ COpen(cpars, cmt2, res, op2) = 1} using
generalized Schnorr proofs [22, 7] through a Fiat-Shamir transformation [13] as follows.

1. The prover, on input of msg, op1, op2, chooses random r0, r1, r2 ←R Zp and computes t1 ← gr0hr1

and t2 ← gr0hr2 .

2. It applies a hash function H to compute c = H(g, h, cmt1, cmt2, t1, t2).

3. It computes s0 ← c ·msg + r0 mod p and si ← c · opi + ri mod p for i = 1, 2.

4. It returns π = (c, s0, s1, s2).

To verify the proof, one computes ti ← gs0hsi mod p for i = 1, 2 and checks that c = H(g, h, cmt1,
cmt2, t1, t2). The proof is a NIZK PoK under the discrete logarithm assumption in G if H is modeled
as a random oracle [2].

3.2 Construction

We build an SNS-based access control system from a group signature scheme (GKg,GSign,GVerify,
GOpen), a public-key encryption scheme (EKg,Enc,Dec), and a commitment scheme (CPGen,Commit,
COpen) with proof system NIZK as follows:

Setup On input of `, the ESN SN runs (gpk, gsk1, . . . , gskn, ok)←R GKg(`, n) where n is an upper
bound for the number of users in the ESN. It also generates an encryption key pair (epk, esk) ←R

EKg(`) and commitment parameters cpars ←R CPGen(`). Return skSN = (gsk1, . . . , gskn, ok, esk)
and pkSN = (gpk, epk, cpars).

Register When user Ui registers with an ESN SN , the latter simply sends ski = gski to Ui.

OTGen User Ui generates a owner token ot for a resource res hosted on SP with access con-
trol policy plc by generating a one-time signing key pair (otpk, otsk) ←R OTKg(`), encrypt-
ing the policy under SN ’s public key with label otpk as c ← Enc(epk, plc, otpk), committing
to the resource (cmt, op) ←R Commit(cpars, res), creating a group signature σ ← GSign(gski,
(policy, c, cmt, otpk,SP)), and signing ots←R OTSign(otsk, (c, cmt, σ)). He sends the owner token
ot = (c, cmt, σ, otpk, ots) and linking information oli = op to SP.

OTVf The service provider SP verifies ot = (c, cmt, σ, otpk, ots) with oli = op for resource res by
checking that COpen(cpars, cmt, res, op) = 1, that GVerify(gpk, (policy, c, cmt, otpk,SP), σ) = 1,
and that OTVerify(otpk, (c, cmt, σ), ots) = 1.

RTGen When a user Uj wants to access a resource res hosted at SP it creates a commitment
(cmt, op) ←R Commit(cpars, res), computes a group signature σ ← GSign(gskj , (access, cmt,SP)),
and sends requester token rt = (cmt, σ) and linking information rli = op to SP.

LTGen The service provider SP computes the linking token lt as a NIZK PoK that the commitments
in the policy and requester token are for the same resource. More precisely, it first verifies requester

11

token rt = (cmt2, σ2) with rli = op2 by checking that COpen(cpars, res, cmt2, op2) = 1 and by
verifying the signature GVerify(gpk, (access, cmt2,SP)) = 1. If any of these tests fail, it returns ⊥,
otherwise it uses owner token ot = (c, cmt1, σ1, otpk, ots) and oli = op1 to produce lt←R NIZK{(res,
op1, op2) : COpen(cpars, cmt1, res, op1) = 1 ∧ COpen(cpars, cmt2, res, op2) = 1}.

Extract When the ESN SN receives a owner token ot = (c, cmt1, σ1, otpk, ots), an requester to-
ken rt = (cmt2, σ2), and a linking token lt from resource host SP, it proceeds as follows. If
any of the signatures is invalid, i.e., if GVerify(gpk, (policy, c, cmt1, otpk,SP), σ1) = 0, OTVerify(
otpk, (c, cmt1, σ1), ots) = 0, or GVerify(gpk, (access, cmt2,SP), σ2) = 0, or if verification of the
NIZK PoK lt fails w.r.t. cmt1, cmt2, then it returns ⊥. Otherwise, it opens σ1 and σ2 as i ←
GOpen(ok, (policy, c, cmt1,SP), σ1) and j ← GOpen(ok,
(access, cmt2,SP), σ2). It also decrypts the policy plc ← Dec(esk, c, otpk). If i = ⊥ or j = ⊥
then it returns ⊥, otherwise it returns (i, j, plc), allowing SN to check whether i and j satisfy the
policy plc.

3.3 Security Proof

Theorem 1. If the one-time signature scheme is strongly one-time unforgeable, the public-key
encryption scheme is IND-CCA2, and the group signature scheme is anonymous and traceable,
then the preceding construction is anonymous.

Sketch. We prove the above theorem through a sequence of games [24] Game 0 through Game 4.
Game 0 is the anonymity game of the SNS-based access control scheme, while we show that any
adversary winning Game 4 gives rise to an anonymity adversary for the underlying group signature
scheme. By proving for each game hop that, under appropriate assumptions, no polynomial-time
adversary can distinguish one game from the next with non-negligible probability, the overall scheme
is proved secure. We briefly sketch the different games and the reductions from the assumptions
underlying each hop.

Game 1 Identical to Game 0, except that in the second phase, whenever the Extract oracle is
queried for a owner token ot = (c, cmt, σ, otpk, ots) containing the same one-time public key otpk =
otpk∗ as the target owner token ot∗ = (c∗, cmt∗, σ∗, otpk∗, ots∗), it returns ⊥. Any adversary
distinguishing Game 0 from Game 1 gives rise to an attack on the strong unforgeability of the one-
time signature scheme, because if ot = ot∗ and otpk = otpk∗, then either (c, cmt, σ) 6= (c∗, cmt∗, σ∗)
so that ots is a signature on a different message (c, cmt, σ), or ots 6= ots∗ so that ots is a different
signature of the same message. Both of these cases break the strong one-time unforgeability of the
scheme.

Game 2 Identical to Game 1, except that whenever the Extract oracle is queried for a owner token
with otpk 6= otpk∗ and σ = σ∗, then it returns ⊥. Any adversary that can distinguish between
Game 0 and Game 1 must come up with a public key otpk such that the honestly generated group
signature σ∗ on otpk∗ is also valid for otpk, which constitutes a forged group signature and therefore
breaks the traceability property of the group signature scheme.

Game 3 Identical to Game 2, except that whenever the adversary queries the Extract oracle with
an requester token rt = (cmt, σ) with σ = σ∗ and cmt 6= cmt∗, where rt∗ = (cmt∗, σ∗) is the
challenge requester token, then the oracle returns ⊥. Any adversary distinguishing Game 2 from
Game 3 must come up with a commitment cmt 6= cmt∗ such that σ∗ is valid for both cmt and cmt∗,
which constitutes a forgery of the group signature scheme and therefore contradicts traceability.

12

Game 4 Identical to Game 3, but the ciphertext in the challenge owner token is created as an
encryption of ones, i.e., c∗ ← Enc(epk, 1|plc1|, otpk∗). Any adversary distinguishing between Games 3
and 4 can be used to break the IND-CCA2 property of the encryption scheme. In the reduction,
the IND-CCA2 adversary B will use its decryption oracle to answer A’s Extract queries. Note that
B will never have to make the “forbidden” decryption query for c∗ with label otpk∗, because all
Extract queries involving otpk∗ are answered with ⊥ since Game 1.

Note that in Game 4, the ciphertext c∗ in the challenge owner token is independent of the hidden
bit b, and that all A’s queries to the Extract oracle involving a group signature σ that is either taken
from ot∗ or from rt∗ will be responded with ⊥. Any adversary A winning Game 4 can therefore
be used to build an adversary B against the anonymity of the group signature, where B uses gski
to respond to A’s Register, OTGen and RTGen queries and uses its GOpen oracle to respond to A’s
Extract queries.

Theorem 2. If the commitment equality proof is zero knowledge and the commitment scheme is
hiding, then our construction satisfies the resource secrecy property.

Sketch. We prove the security through a sequence of games Game 0 through Game 2, where Game 0
is the original resource secrecy game.

Game 1 Identical to Game 0, but the game uses the zero-knowledge simulator to produce the
NIZK PoK lt∗, so that it no longer needs witnesses resb, op1, op2 to produce it.

Game 2 Identical to Game 1, but the game commits to a string of ones instead of the real resource
resb, i.e., in the creation of the challenge policy and requester token it computes (cmti, opi) ←R

Commit(cpars, 1|res0|) for i = 1, 2. This game is indistinguishable from the previous one by the
hiding property of the commitment scheme.

In the final game Game 2, the adversary’s view is independent of the bit b chosen by the game,
so its advantage in winning the game is 1/2.

Theorem 3. If the group signature scheme is traceable, the commitment equality proof is a proof
of knowledge, and the commitment scheme is binding, then our construction satisfies the token
unforgeability property.

Sketch. Let’s distinguish between a Type-a, Type-b, and Type-c adversary depending on the dif-
ferent winning conditions that they satisfy in Step 4 of the winning game.

A Type-a adversary A outputs (ot′, rt′, lt′) such that (i, j, plc′)← Extract(skSN , ot
′, rt′, lt′) with

i = 1 and A never queried a owner token from U1 for policy plc′, while for a Type-b adversary j = 2
and A never queried any requester token from U2. Both Type-a and Type-b adversaries are easily
converted into forgeries for the group signature scheme, i.e., they break the traceability property of
the group signature scheme.

The forger of a Type-c adversary is such that i = 1, j = 2, and there does not exist a resource
res′ such that A queried a owner token by U1 for plc′, res′ as well as an requester token by U2 for
res′. Here, we can distinguish between two adversary subtypes: a Type-c1 adversary, where one of
ot′ or rt′ contain a commitment cmt1 or cmt2 that was not previously returned as part of a policy or
requester token by the OTGen or RTGen oracle, respectively, and a Type-c2 adversary, where both
commitments were recycled from previous tokens. A Type-c1 adversary again easily gives rise to a
forgery on the group signature scheme and hence breaks the traceability property. For a Type-c2
adversary, let cmt1 and cmt2 be the commitments in ot′ and rt′, respectively. Since these were

13

both recycled from previous token queries, let res1, op1 and res2, op2 be the resources and opening
information for which they were generated by the oracles at the time. We can run the knowledge
extractor for the NIZK PoK lt′ to extract witnesses res′, op′1, op

′
2 that prove that cmt1, cmt2 are

commitments to the same message. Since res1 6= res2 due to the winning condition of a Type-c
adversary, we know that res′ 6= resi for at least one of i ∈ {1, 2}. Therefore, (resi, opi) and (res′, op′i)
are two valid openings for the same commitment cmti, thereby breaking the binding property of
the commitment scheme.

Theorem 4. If the commitment equality proof is complete and the group signature scheme is
traceable, then our construction satisfies the provider security property.

Sketch. There are six different reasons for the Extract algorithm to output ⊥, namely:

1. GVerify(gpk, (policy, c, cmt1, otpk,SP), σ1) = 0,

2. OTVerify(otpk, (c, cmt1, σ1), ots) = 0,

3. GVerify(gpk, (access, cmt2,SP), σ2) = 0,

4. verification of the NIZK PoK lt fails w.r.t. cmt1, cmt2, or

5. one of the recovered identities i, j is ⊥.

Reasons 1 and 2 cannot occur since they would have caused the OTVf to reject the owner token,
while reason 3 would have caused the LTGen to return ⊥. Reason 4 contradicts the completeness of
the commitment equality proof. Finally, reason 5 means that a policy or requester token contains a
valid group signature that cannot be opened, which violates the traceability of the group signature
scheme.

4 Implementation with OAuth

In the following, we discuss how an existing SNS can be extended to be an SNS-based access
control system by means of existing web technology. As we will see, we are able to achieve most
of our envisioned security requiremens by utilizing the OAuth 2.0 authorization framework [17].
However, linking tokens to a particular resource is not part of this solution. In the following,
we first introduce OAuth, then we give the implementation details, and afterwards we informally
discuss the implementation’s security properties.

4.1 OAuth Authorization Framework

OAuth 2.0 enables users to authorize third-party access to their online resources by providing a
so-called OAuth access token to the third party instead of sharing their actual access credentials
(such as their username and password). For example, a user could grant some photo printing
service limited access to her Google+ image gallery by providing the printing service with an access
token. Such a token is an opaque string that represents an access authorization issued to the
bearing third party. The third party making requests to protected resources on behalf of the user
is also called a client in OAuth. OAuth tokens are issued to clients (e.g., SP) by an authorization
server (e.g. SN) with the approval of the resource owner (e.g. some user Ui). For security reasons
(cf. [17, Sec. 3.2.1.]), clients have to register with the authorization server to obtain authentication
credentials consisting of a client identifier and password.

14

To discuss the security properties of our implementation later on, in the following we briefly
outline the five steps of the most common OAuth message flow [17]:

1. The client initiates the protocol flow by (re-)directing the resource owner’s user agent (e.g., her
web browser) to the authorization server. The client includes its client identifier, the requested
access scope, and a URI to which the authorization server will redirect the user back once access
is granted (or denied).

2. The authorization server authenticates the resource owner via the user agent and establishes
whether she grants or denies the client’s access request for the given scope.

3. In case the resource owner grants access, the authorization server redirects the user agent back
to the client using the redirection URI provided earlier. The redirection URI includes an autho-
rization code.

4. The client requests an access token from the authorization server by providing the server with the
authorization code received in the previous step. When making the request, the client includes her
authentication credentials obtained during registration (e.g., with HTTP Basic authentication).
The request is made using a server-authenticated channel with Transport Layer Security (TLS).

5. The authorization server authenticates the client and validates the authorization code. If valid,
the authorization server responds back with an access token.

4.2 Implementation

In this section, we describe how an SNS SN can implement a web service endpoint (e.g., a RESTful
API) to be used by SP that on input of an owner token ot and an requester token rt returns a boolean
answer on whether the policy associated with ot as evaluated under the user identity associated
with ot is satisfied w.r.t. the user identity associated with rt, i.e., 0/1 ← policyEval(ot, rt). We
realize rt and ot as OAuth access tokens and use the OAuth protocol as previously described to
provide SP with these tokens. We assume that SP has registered with SN as OAuth client and
obtained authentication credentials accordingly. SN may choose to grant access to its endpoint
only to parties who authenticate with their OAuth client credentials.

4.2.1 Resource Deposition

For a user Ui to be allowed to deposit some resource with description res (e.g., the resource URL)
with SP, she has to provide SP with an owner token ot. With this token, Ui authorizes SP to
evaluate some policy plc on her behalf by means of the mentioned service endpoint. To obtain
this token, SP executes the OAuth authorization protocol as client with Ui and with SN as
authorization server. SP uses the scope policyEval owner to unambiguously indicate to SN and to
the user that it requests the generation of an owner token that it wants to use for policy evaluation
with SN ’s service endpoint. During user authentication in step 2, Ui provides SN not only with
her credentials (e.g., username and password), but also with the policy plc that shall be associated
with the owner token (e.g., by filling out some web form). Before SN returns ot in step 5 of the
OAuth flow, it first generates this token as random string with sufficient entropy and associates
it in some local database with the authenticated user Ui, the policy plc, and the requested scope.
Having received the owner token ot, SP allows to deposit the resource and associates it with res
and ot in some local database. Having deposited the resource, Ui sends res to her friends (e.g., by
email) so that they can access the resource.

15

4.2.2 Resource Access

When some user Uj wants to access the resource with description res hosted by SP, the user first has
to provide SP with a one-time requester token rt so that SP can make a policy evaluation query.
With this token, Uj authorizes SP to involve her in a policy check done with SN ’s service endpoint.
To obtain the token, SP executes the OAuth protocol as client with Uj and with SN . SP uses
the scope policyEval requester to indicate to SN and to the user that it requests the generation
of a requester token that it wants to use for policy evaluation with SN ’s service endpoint. Before
SN returns rt in step 5 of the OAuth flow, it first generates this one-time token as random string
with sufficient entropy and associates it in some local database with both the authenticated user Uj
and the requested scope. After SP has obtained the requester token, it retrieves the owner token
associated with res and queries SN ’s policy evaluation endpoint (e.g., by means of a HTTP GET
request) by using the retrieved owner token and the obtained requester token as query parameters.

4.2.3 Policy Evaluation

Upon receiving a policy evaluation query on its web service endpoint from SP, SN retrieves from
its local database the user identities Ui and Uj and the scopes so and sr that are associated with the
provided owner and requester token, respectively. It also retrieves the policy plc associated with the
owner token from this database. Afterwards, SN checks whether so and sr equal policyEval owner
and policyEval requester , respectively. If the tokens are valid, the scopes match, and the requester
token has not been used before, SN evaluates plc under Ui’s identity (i.e., as if Ui would execute
the query herself while being logged in) which query results in a set of user identities. Finally, SN
responds to SP in a boolean fashion whether Uj is member of this set and marks rt as used. If one
of the tokens is not valid or the scopes do not match, SN aborts the transaction. If the service
request was authenticated, SN may optionally deny the authenticated party future access to the
service endpoint.

4.3 Security Properties

Here we discuss the security properties of our implementation based on the OAuth protocol. Because
the security requirements are defined with respect to the procedures defined in Sec. 2.2, we discuss
the properties only informally and do not elaborate on the correctness of the implementation.

Anonymity Assuming that both the owner token and the requester token are opaque strings
of sufficient length that are chosen randomly by SN with sufficient entropy, these strings neither
reveal the user identities nor the policy that are associated with the tokens. The only place where
the relation between token strings and the associated user identities and policy are stored, is the
local database of SN . We assume that this database is accessible only by SN . Further, the
OAuth message flow for providing SP with an access token ensures that both the user’s identity
in SN—and the policy when setting up an owner token—are confidentially communicated to (and
only to) SN in step 2 of the flow. Thus, SP cannot tell which identity is associated with a token,
or even whether two tokens were generated by the same or by different users. It follows that
our implementation of an SNS-based access control system with OAuth tokens as described above
satisfies the anonymity requirement.

Note that we assume that both the owner token and the requester token provided to SP have
only the OAuth scopes policyEval owner and policyEval requester , respectively. In case the tokens

16

have also other access scopes, SP may be able to extract the identities of the associated users. For
example, in Facebook, every OAuth token allows a client to query both the public profile and the
friend list of the associated user, independent of which (additional) scopes the token has. The public
profile information includes the user’s identifier, first name, last name, username, and gender. Thus,
if Facebook were to implement our scenario as described above, the basic permissions of Facebook
OAuth tokens would have to be adapted such that the public profile and the friend list can only be
accessed with appropriate access scopes.

Resource Secrecy Formally, resource secrecy requires that no token leaks information to SN
about the resource for which the tokens were generated. Since owner and requester tokens are
generated by SN itself, they cannot leak any information to SN about the resource for which the
tokens were generated. Adapted to our OAuth scenario, resource secrecy requires that SN does
not learn which resource is associated with an owner token, and which resource is being accessed
by means of a requester token. Given that neither of the OAuth message flows for providing SP
with an owner or requester token involve any information about the resource that is deposited or
accessed, the resource secrecy requirement is satisfied.

Token Unforgeability Token unforgeability asks that a cheating service provider cannot modify
the policy set by the resource owner, and that a cheating user cannot get access if she does not satisfy
the policy. Assuming that a cheating service provider SP does not have access to the database of
SN that stores the relation between owner token strings and policies, SP cannot modify the policy
set by the resource owner. Further, assuming that SN -users cannot modify profile information
of other users (e.g., their friends, or friend lists), the policy evaluation procedure of SN , or SP’s
procedure for granting access based on the results of a policy evaluation query, and assuming that
the policy evaluation result is communicated securely (e.g., by using a TLS connection), users who
do not satisfy the policy cannot get access. If a policy only concerns profile information of one user,
then a cheating user who knows the policy could modify his own profile information such that it
matches the policy.

Token unforgeability further requires that SN can check whether an owner token and a requester
token are created for the same resource, but at the same time, resource secrecy mandates that SN
should not learn any information about the resource. These requirements are rather difficult to
reconcile with our OAuth implementation. One could associate tokens in SN ’s system with the
hash values of the resource identifier or its content, but this requires the resources or their identifiers
to have high entropy, and certainly does not meet our strong notion of indistinguishability. We
therefore cannot prevent that SP reuses a requester token to test whether the requester also satisfies
policies associated to other resources than the one he queried. This can be somewhat mitigated by
letting SN accept each requester token only once for policy evaluation.

Provider Security Provider security requires that no adversary is able to provide SP with
invalid access tokens. Because access tokens are produced by SN itself in its role as authorization
server and obtained by SP via a TLS connection with server authentication by means of a one-time
authorization code without passing through the resource owner’s user agent, SP can be sure that
the tokens are indeed coming from SN and not from an adversary. Thus, provider security is
satisfied.

17

5 Efficiency Discussion

The efficiency of our constructions based on group signatures mainly depends on the chosen in-
stantiations for the underlying building blocks. There are many trade-offs to be made, e.g., of
efficiency versus security assumptions, and of bandwidth versus computation. One slight problem
is that some of the most efficient group signature schemes [6, 4] have opening linear in the number
of group members, i.e., the number of users in the social network, which would be prohibitive in
our case. However, the owner and requester can encrypt their usernames to SN and include the
ciphertext in the owner and requester tokens, respectively. This comes at negligible extra cost in
the owner token because the username can be encrypted together with the policy, and comes at
the cost of an additional ciphertext in the requester and linking token. As an illustrative exam-
ple, let’s consider our construction when instantiated using elliptic curves with the group signature
scheme by Bichsel et al. [4], ElGamal encryption [12] in combination with the Fujisaki-Okamoto
transformation [15] to obtain IND-CCA2 security, and Schnorr signatures [22]. The generation of
an owner token in such an instantiation takes 9 exponentiations, the verification takes 2 pairings
and 4 exponentiations. The owner token itself contains 8 group elements and 3 exponents, taking
2816 bits for a 256-bit curve. Generation of a requester token takes 7 exponentiations, while the
token itself contains 6 group elements and 2 exponents, or 2048 bits. Linking token generation
takes 2 pairings and 5 exponentiations, the token itself contains 4 exponents or 1024 bits. Finally,
extraction takes 10 pairings and 13 exponentiations.

Our OAuth implementation is very efficient because the required operations merely involve
simple HTTP redirects, the inexpensive creation and lookup of a few database entries, the generation
of two secure random numbers that represent the tokens, and SN ’s evaluation of the policy under
Ui’s identity. The latter represents a query that results in a set of user identities, and such queries
are highly optimized by today’s SNS providers because they are also used to search for new friends
in an SNS. Facebook’s newly introduced Graph Search is a prominent example of such a query
possibility.

In terms of number of communication flows, the group signature construction is more efficient
than the OAuth construction. Namely, our group signature construction only requires a single
communication flow to deposit a resource at the SP, while accessing a resource involves two rounds
of communication. The OAuth scheme, on the other hand, requires five HTTP request-response
transactions to deposit a resource, and needs six such transactions to access a resource.

6 Conclusion

We presented the first privacy-preserving mechanisms to leverage profile and relationship infor-
mation maintained in SNSs to make access control decisions for externally hosted resources. We
presented two constructions: the first is a novel cryptographic scheme based on group signatures,
the second uses the standardized OAuth authorization protocol. The OAuth protocol is computa-
tionally more efficient because it only requires random number generation and database lookups,
as opposed to several public-key operations for the group signature scheme. On the other hand, the
group signature construction has a simpler communication flow with less redirections and message
round-trips between the participants. In terms of security, the group signature construction has the
advantage that owner and requester tokens are tightly bound to a particular resource, preventing
a cheating service provider from reusing the requester token to test whether the requester also sat-
isfies the policy attached to a different resource. Such protection cannot be achieved with OAuth,

18

but the effect can be mitigated by letting the SNS limit requester tokens to be used only once in a
policy evaluation query.

The group signature construction is also more amenable to further cryptographic extensions.
For example, it could be extended such that the owner of the resource is informed which users
accessed the resource, without SP and SN learning more information than they do in the current
scheme. In a nutshell, this could be realized by also generating public keys for users as part of
the registration protocol and letting SN store the public keys. Then, whenever SN gets a request
from SP to extract (i, j, plc) from (ot, rt, lt) and to evaluate the policy plc, SN ’s reply could not
only say whether access should be granted, but also contain an encryption of j under Ui’s public
key. SP can then store all these encryptions and provide them to Ui upon request. We leave the
details of a concrete realization as well as a formal definition of the required additional procedures
and security properties as future work.

Another possible useful extension of our scheme would be to allow the definition of policies
spanning several social networks in such a way that the different accounts at the different social
networks are guaranteed to be held by the same user, and such that it is not leaked which parts of a
policy a user satisfies (e.g., the part with respect to one social network SN 1, but not with another
SN 2).

The access control mechanisms presented in this paper essentially let the owner of the resource
delegate to SP the right to perform policy evaluation queries at SN with respect to the owner’s
identity. Additionally, the requester’s token acts as her permission to evaluate the policy on her
identity. One possible extension would be to make the requester aware of the policy that will be
evaluated. To keep the policy hidden from SP, it would likely have to be encrypted under the user’s
public key. As another extension, the social network could impose additional restrictions on which
type of policies the resource owners can associate to their resources, or let requesters indicate in
their privacy settings which policies can be evaluated on their profiles. For example, it would make
sense that SN imposes that the owner’s policy cannot take into account any information about
other users that the owner doesn’t have access to on the social network. Alternatively, one could
let the requester specify his privacy preferences as part of the requester token.

7 Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme for the projects ABC4Trust (grant agreement no. 257782), FutureID (grant
agreement no. 318424), and PERCY (grant agreement no. 321310).

References

[1] M. Bellare, D. Micciancio, B. Warinschi. Foundations of group signatures: Formal definitions,
simplified requirements, and a construction based on general assumptions. EUROCRYPT 2003,
Springer, 2003.

[2] M. Bellare, P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. ACM CCS 1993, ACM, 1993.

[3] M. Bellare, H. Shi, C. Zhang. Foundations of group signatures: The case of dynamic groups.
CT-RSA 2005, Springer, 2005.

19

[4] P. Bichsel, J. Camenisch, G. Neven, N. Smart, B. Warinschi. Get Shorty via Group Signatures
without Encryption. SCN 2010, Springer, 2010.

[5] M. Blum, P. Feldman, S. Micali. Non-Interactive Zero-Knowledge and Its Applications. STOC
1988, ACM, 1988.

[6] D. Boneh, H. Shacham. Group Signatures with Verifier-Local Revocation. ACM CCS 2004,
ACM, 2004.

[7] J. Camenisch, A. Kiayias, M. Yung. On the Portability of Generalized Schnorr Proofs. EURO-
CRYPT 2009, Springer, 2009.

[8] R. Canetti, S. Halevi, J. Katz. Chosen-ciphertext security from identity-based encryption. EU-
ROCRYPT 2004, Springer, 2004.

[9] B. Carminati, E. Ferrari. Privacy-Aware Access Control in Social Networks: Issues and Solu-
tions. Privacy and Anonymity in Information Management Systems, Springer, 2010.

[10] B. Carminati, E. Ferrari, A. Perego. Enforcing access control in Web-based social networks.
ACM TISSEC, 13 (1):6, 2009.

[11] D. Chaum, E. van Heyst. Group signatures. EUROCRYPT 1991, Springer, 1991.

[12] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans Inf Theory 31(4):469–472, 1985.

[13] A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature
Problems. CRYPTO 1986, Springer, 1987.

[14] P.W.L. Fong. Relationship-Based Access Control: Protection Model and Policy Language, In
ACM CODASPY, ACM, 2011.

[15] E. Fujisaki, T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
CRYPTO 1999, Springer, 1999.

[16] C.E. Gates. Access control requirements for Web 2.0 security and privacy. IEEE Web 2.0
Privacy and Security Workshop (W2SP’07), IEEE, 2007.

[17] D. Hardt. The OAuth 2.0 Authorization Framework. IETF RFC 6749, 2012.

[18] H. Hu, G.-J. Ahn, J. Jorgensen. Multiparty Access Control for Online Social Networks: Model
and Mechanisms. IEEE TKDE, 25 (7):1614–1627, 2013.

[19] L. Lamport. Constructing Digital Signatures from a One-Way Function. TR CSL-98, SRI,
1979.

[20] P. MacKenzie, M. Reiter, K. Yang. Alternatives to non-malleability: Definitions, constructions,
and applications. TCC 2004, Springer, 2004.

[21] T. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
CRYPTO 1991, Springer, 1991.

20

[22] C.-P. Schnorr. Efficient Identification and Signatures for Smart Cards. EUROCRYPT 1989,
Springer, 1989.

[23] V. Shoup. A proposal for an ISO standard for public key encryption (version 2.1). Manuscript,
2001.

[24] V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Manuscript,
2004 (revised 2006).

21

	Introduction
	SNS-Based Access Control
	High-Level Idea
	Definitions
	Security Requirements

	Group Signature Construction
	Preliminaries
	Group Signatures
	Public-Key Encryption with Labels
	One-Time Signature Schemes
	Commitments with Equality Proofs

	Construction
	Security Proof

	Implementation with OAuth
	OAuth Authorization Framework
	Implementation
	Resource Deposition
	Resource Access
	Policy Evaluation

	Security Properties

	Efficiency Discussion
	Conclusion
	Acknowledgments

