On the Practical Feasibility of Secure Distributed Computing: a
Case Study

Gregory Neven, Frank Piessens] Bart De Decker
Dept. of Computer Science, K.U.Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
Fax: ++32(0)16 327996
E-mail:{gneven, frank,bart}@cs.kuleuven.ac.be

Abstract

Secure Distributed Computing addresses the prob-
lem of performing a computation with a number
of mutually distrustful participants, in such a way
that each of the participants has only limited access
to the information needed for doing the computa-
tion. Over the past decade, a number of solutions
for this problem have been developed. The vari-
ous proposed solutions differ in the cryptographic
primitives that are used, and in the class of compu-
tations that can be performed. However, all suffi-
ciently general solutions have one thing in common:
the communication overhead between the involved
parties seems to be prohibitive.

In this paper, we consider a concrete instance
(with considerable practical interest) of the gen-
eral problem of secure distributed computing, and
we investigate how bad the communication over-
head really is. This involves tailoring the different
general solutions to the specific problem at hand,
optimizing them for minimal communication over-
head, and evaluating the resulting communication
overhead.

Our conclusion is that the communication over-
head is still large, but can be substantially re-
duced using specific techniques. Moreover, agent-
techology makes Secure Distributed Computing
more appealing, since the mobile agents can po-
sition themselves close to each other.

*Postdoctoral Fellow of the Belgian National Fund for
Scientific Research (F.W.O.)

1 Introduction

Secure distributed computing addresses the prob-
lem of distributed computing where some of the al-
gorithms and data that are used in the computation
must remain private. Usually, the problem is stated
as follows, emphasizing privacy of data. Let f be a
publicly known function taking n inputs, and sup-
pose there are n parties (named p;,i = 1...n), each
holding one private input x;. The n parties want
to compute the value f(z1,...,z,) without leaking
any information about their private inputs (except
of course the information about z; that is implicitly
present in the function result) to the other parties.
An example is voting: the function f is addition,
and the private inputs represent yes (z; = 1) or no
(x; = 0) votes. In case you want to keep an algo-
rithm private, instead of just data, you can make f
an interpreter for some (simple) programming lan-
guage, and you let one of the x; be an encoding of
a program.

In descriptions of solutions to the secure dis-
tributed computing problem, the function f is usu-
ally encoded as a boolean circuit, and therefore se-
cure distributed computing is also often referred to
as secure circuit evaluation.

It is easy to see that an efficient solution to the
secure distributed computing problem would be an
enabling technology for a large number of inter-
esting distributed applications across the Internet.
Some example applications are: auctions without
a trusted third party ([9]), charging for the use of
algorithms on the basis of a usage count ([10, 11]),
various kinds of weighted voting, protecting mobile
code integrity and privacy ([8]), ...

Over the past decade, a fairly large variety of
solutions to the problem has been proposed. An
overview is given by Franklin [4]. These solutions
differ from each other in the cryptographic prim-
itives that are used, and in the class of compu-
tations that can be performed (some of the solu-
tions only allow for specific kinds of functions to
be computed). However, these ingenious, powerful
solutions have not yet been used in practical dis-
tributed applications, mainly because they incur a
very large communication overhead.

Given the fact that communication bandwidth
increases steadily, and research on more efficient
solutions to the secure distributed computing prob-
lem slowly decreases the communication overhead,
it is clear that practical feasibility of secure dis-
tributed computing protocols is only a matter of
time. Moreover, agent-technology makes secure
distributed computing more appealing, since the
mobile agents can position themselves close to each
other, thus avoiding large transfers across the In-
ternet. Of course, the site on which the agent is
executing must be trusted by at least one of the
parties. A host that is unconditionally trusted
by all parties obviously reduces secure distributed
computing to a trivial problem requiring hardly
any protocol at all. However, the level of trust
needed here exceeds the one we need by far. In
contrast with protocols that use unconditionally
trusted third parties, the trusted site is not involved
directly. It simply offers a secure execution plat-
form: i.e. it executes the agents correctly, does not
spy on them and does not leak information to other
agents. The trusted host does not have to know the
protocol used between the agents. In other words,
the combination of agent technology and secure dis-
tributed computing protocols makes it possible to
use a generic trusted third party that, by offering a
secure execution platform, can act as trusted third
party for a wide variety of protocols in a uniform
way.

The goal of this paper is to investigate how
close we are to practical applicability of secure dis-
tributed computing technology. We investigate this
in the following way. In section 2, we describe a
concrete problem of practical interest that requires
this technology. Next, we try to solve the problem
in the most efficient way, using various techniques
for secure distributed computing proposed in the
literature. For each of the investigated techniques,

we tailor and optimize the technique for the prob-
lem at hand. Finally, we conclude by assessing the
acceptability of the communication overhead.

Our conclusions show that practical feasibility of
secure distributed computing technology is for the
very near future, if not for today.

2 An example application of
secure distributed comput-
ing technology

In this section, an interesting application that re-
quires the use of secure distributed computing tech-
nology is introduced, and a number of assump-
tions about this application (like estimations of
the size of the inputs to the application) are made
explicit. This application could be implemented
based on conventional cryptography and a trusted
third party, but if it must be implemented without
trusted third party, the use of secure distributed
computing techniques is essential.

Suppose Alice is human resource manager of a
company looking for new employees and Bob makes
a living gathering CVs in a database and selling
these to interested companies. Bob’s database con-
tains a wide variety of records but Alice is not will-
ing to pay for a CV she’s not interested in: she
only wants records that satisfy a certain query.
Of course, Bob doesn’t want to reveal his entire
database if Alice is only going to buy a few records
from it, but on the other hand Alice might want to
keep her query secret from Bob (maybe she doesn’t
want her competitors to know about her selection
criteria). What they need is a so-called Secret
Query Database, that works as follows.

Let’s denote Alice’s query as g and one of Bob’s
records as x. This Secret Query Database must
allow them to cooperate in such a way that they
can compute g(z) while Alice preserves the secrecy
of ¢ and Bob preserves that of . The result of g(x)
is a single bit: a one if x satisfies ¢ or a zero if it
doesn’t. In case the outcome of g(z) is a one, Bob
sends the record to Alice and Alice pays for it. In
case it is a zero, Bob keeps the record for himself.

What exactly is meant by secrecy of the query is
a fine matter. In this paper, we try to achieve the
following level of secrecy: in the assumption that
the query is completely random, that E is the set

of already evaluated records (so Bob knows ¢(z) for
every z € E) and that y ¢ E, Bob should not be
able to predict g(y) non-negligibly better than ran-
dom guessing. This definition allows Bob to know
which records Alice wants, but not why she wants
those records. If we look at g as a huge truth table
with on every line a possible record as input and
the result bit of the query for that record as out-
put, we can say that Bob learns only the lines that
correspond to records he evaluated together with
Alice, but he can’t tell anything about the other
lines. A stronger definition would be for Bob to
learn only how many records are selected (for pay-
ment purposes) but not the exact identity of the
records. This would lead us to a generalization of
Private Information Retrieval (PIR), introduced in
[3], which is a conceptually different problem.

No matter which protocol is used, there must al-
ways be some minimal interaction. Neither of both
parties should be able to evaluate a query without
any help from the other. More specifically, after
evaluating ¢(z) together, Bob should not be able
to learn g(z') without help from Alice and in the
same way Alice should not be able to calculate ¢'(z)
all by herself. If the first condition doesn’t hold, it
is trivial to see that our definition of secrecy of Al-
ice’s query is violated. If the second doesn’t hold,
Alice could subsequently evaluate the queries “is
the ith bit of x a one?” for every bit in x and thus
obtain the entire record z without paying for it.

Most protocols for secure distributed computing
represent the function to be evaluated as a logi-
cal circuit. An important issue if we want to esti-
mate the communication complexity is the number
of gates and inputs needed in those circuits. With
the concrete example of Bob’s database containing
CVs in mind, we use the following notation: the
size of a single record is is bits or i,/8 bytes. A
circuit representing a query takes C gates on the
average. Realistic values for the example of the Se-
cret Query Database are: i, = 4000,C = 1000.
Some protocols allow one party to hide the cir-
cuit from the other parties, but some don’t. If we
want to use the latter to implement a Secret Query
Database, some kind of universal circuit is needed
where Bob’s secret input is still one of his records
but Alice’s secret input is an encoding of her query
(in other words, as discussed in the introduction,
we need an ‘interpreter circuit’ that can interpret
a simple query language). The number of gates of

such a universal circuit is denoted as C,,. It is fea-
sible to construct such a universal circuit allowing
most common queries using C,, = 4000 gates. The
encoding of a query would take about ¢., = 1000
bits.

Protocols for secure distributed computing typi-
cally require a lot of network resources. Sometimes,
we can reduce the communication overhead if Bob
publishes reusable data on CD-ROM. By reusable,
we mean that it must be possible to use this data
over and over again in multiple evaluations with-
out leaking any additional information about the
records or the query, even if these evaluations are
performed with gossiping clients or — which is es-
sentially the same thing — with one and the same
client. This method is most useful for slowly evolv-
ing databases like the one containing CVs. Bob can
then publish this CD-ROM on a regular but not too
frequent basis in relatively large quantities.

In the remaining text of this paper, Bob is re-
ferred to as the server, while Alice is called the
client.

3 Possible Solutions

Various kinds of solutions for the secure distributed
computing problem have been proposed in the lit-
erature (often using different terminology than the
one used in this paper). We distinguish four kinds
of solutions, and discuss how the Secret Query
Database could be implemented using them.

3.1 Protocols based on symmet-
ric cryptography and oblivious
transfer

In [6], Goldreich, Micali and Wigderson present
a two-party protocol for the problem of combined
oblivious transfer which is equivalent to the prob-
lem of secure circuit evaluation. The two players A
and B proceed as follows. B assigns two random
bit strings r? and r} to every wire ¢ in the circuit,
which represent an encoded 0 and 1 on that wire.
This defines a mapping ¢; : r? — b for every wire
i. B also chooses a random bit string R that will
allow A to check if a decryption key is correct. The
general idea of the protocol is that, if b is the bit
on wire ¢ in the evaluation of the circuit for A’s
and B’s secret inputs, A will only find out about

r? and will never get any information about ¢;(r?)
or r! . In other words, A evaluates the circuit with
encoded data.

We use the notation E(M,r) for a symmetric en-
cryption function of the message M with secret key
r. To encrypt a NOT-gate with input wire 4 and
output wire o, B constructs a random permutation
of the tuple

< E(R Té,T?),E(R' 7’2,7‘%) >
where - denotes the concatenation of bit strings. To
encrypt an AND-gate with input wires [and r and
output wire o, B constructs a random permutation
of the tuple

<E(R'T‘S,’f‘?@T‘g),E(R-T‘S,T‘?@T%),
ER-rl @r0),E(R-ri,rl ®r}) >

with @ the bit-wise XOR. Any other binary port
can be encrypted in an analogous way.

B sends the encryption of every gate in the cir-
cuit together with R, the encoding of his own input
bits and the mapping ¢,, of the output wire m to
A. To perform the evaluation of the circuit on en-
coded data, A first needs encodings of all the input
bits. For B’s input bits, the encoding was sent to
her, but since B doesn’t know A’s inputs, B can’t
send an encoding of them. Note that B can’t send
the encoding of both a 1 and a 0 on A’s input wires
either, because that would allow A to find out more
than just the result of the circuit. The technique
that is used to get the encoding of A’s input to A is
called one-out-of-two oblivious transfer ([7]). This
is a protocol that allows A to retrieve one of two
data items from B in such a way that (1) A gets
exactly the one of two items she chose and (2) B
doesn’t know which item A has got.

Thus, A and B execute a one-out-of-two oblivi-
ous bit string transfer (often referred to as (3)-OT¥)
for each of A’s input bits. This guarantees that A
only obtains the encoding of her own input bits
without releasing any information about her bits
to B. A evaluates each gate by trying to decrypt
every element of the tuple using the encoding of
the bit on the input wire (or the XOR, of two input
bit encodings) as a key; she will only decrypt one
of the elements successfully, thereby obtaining the
encoded bit on the output wire. Note that she can
know if a decryption was correct by comparing the

first bits of the decrypted string with R. Proceed-
ing this way through the entire circuit, A obtains
the encoding of the final output and applies ¢,, to
reveal the plain output bit.

How can this protocol fit in an implementation
of a Secret Query Database? The circuit is visible
to both parties (it is not an ambition of the pro-
tocol to hide the circuit), so we need a universal
circuit. The server plays the role of B, the circuit
scrambler, and the client takes A’s part, the circuit
evaluator. Evaluating multiple records on the same
encrypted circuit should be prevented: the client
would learn a lot of information about the records.
For every record evaluation, a new encryption of
the circuit has to be constructed and transmitted.
To save network resources, the server can publish
the encoding of his input bits (i.e. the records)
on CD-ROM without jeopardizing the secrecy of
the records: in fact it’s just a CD-ROM filled with
random bits. The circuits the server constructs af-
terwards to evaluate these records must of course
use the same mappings for his input bits as used
on the CD-ROM.

The encoding of the client’s query, which is her
secret input, remains the same for all records —
there’s no reason to change it, any record looks the
same to her. The server can choose to construct
the different instances of the circuit for evaluation
of the same query with identical mappings for the
client’s inputs. The advantage of this technique
is that the (f)—OT'C only has to be executed once
instead of once for every record.

If we use a symmetric 64-bit block cipher as en-
cryption function, we can estimate the data com-
plexity of the entire protocol as follows. Each en-
coding of a record takes 8is; bytes on CD-ROM.
An encrypted NOT-gate takes 32 bytes and an
AND-gate takes 64 bytes, so on the average an en-
crypted gate takes 48 bytes, which means a scram-
bled (universal) circuit takes about 48C,, bytes for
each record. Using the implementation described in
[7] with |p| = 512, the oblivious transfers take an
additional 384i., bytes (independent of the number
of records) to be sent over the network.

3.2 Using probabilistic encryption

Another technique to compute with encrypted data
is based on homomorphic probabilistic encryption.
An encryption technique is probabilistic if the same

cleartext can encrypt to many different cipher-
texts. To work with encrypted bits, probabilistic
encryption is essential, otherwise only two cipher-
texts (the encryption of a zero and the encryp-
tion of a one) would be possible, and cryptanal-
ysis would be fairly simple. An encryption tech-
nique is homomorphic if it satisfies equations of the
form E(x op y) = E(z) op’ E(y) for some
operations op and op’. A homomorphic encryp-
tion scheme allows operations to be performed on
encrypted data, and hence can be used for secure
circuit evaluation.

Abadi and Feigenbaum present a protocol for
two-player secure circuit evaluation using a homo-
morphic probabilistic encryption scheme based on
the Quadratic Residuosity Assumption (QRA) in
[1]. This protocol allows A who has a secret func-
tion f and B who has secret data x to calculate
f(z) without jeopardizing their secrets. More pre-
cisely, the protocol allows A to hide her circuit un-
conditionally except for the number of AND-gates,
while B hides his data under the QRA.

Let k be the product of two primes p and ¢, each
congruent to 3 mod 4. An integer a € Z}[+1] — the
integers relatively prime to k£ with Jacobi symbol 1
— is a quadratic residue mod k if there exists an
z € Z}[+1] such that a = z? mod k. The QRA
states that determining if an integer a is a quadratic
residue mod k is a hard problem if the factorization
of k is unknown but is easy to solve if p and ¢ are
given.

If we encrypt a zero by a quadratic residue and a
one by a quadratic nonresidue mod %, we can define
the encryption of a bit b as

E(b) = (=1)? -7 mod k

with r €r Z;[+1] chosen at random. This prob-
abilistic encryption scheme has two homomorphic
properties that will come in very handy in the pro-
tocol:

B (B) = (—1) - By(b) mod k
Ek(bl D b2) = Ek(bl) . Ek(bz) mod k

B starts the protocol by choosing p and ¢ and
multiplying them to produce k. B sends k and the
encryption of his data bits Ex(x1), ..., Ex(zn) to A.
B keeps the factorization of k secret. A then starts
evaluating her secret circuit. If she has to evaluate
a NOT gate with input Ej(b), she simply calcu-
lates —Ey(b) mod k. An XOR with inputs Ej(b1)

and Ej(bs) is also easy to evaluate: A just takes
Ej(b1) - E(bs) mod k as the output of the gate.
To evaluate the AND of inputs Ey(b1) and Ej(bs),
she needs B’s help. A chooses two bits ¢; and ¢y at
random and sends E(by @ ¢1) and Ej(bs @ c2) to
B. B decrypts the bits A just sent him as d; and
dy (he can do so because he knows p and ¢) and
sends the tuple

< Ej, (dl/\dz), Ey, (dl /\d_g), Ey, (d_l/\dz), E; (d_l/\d_z) >

to A. A takes the first element of this tuple as the
output of the AND gate if she chose ¢; = ¢c2 = 0,
the second if she chose ¢; = 0 and ¢ = 1, the third
if she chose ¢; = 1 and ¢ = 0 and the last one if she
chose ¢; = ¢ = 1. Proceeding this way from gate
to gate, A ends with the encrypted result Ei(f(z))
and sends it for decryption to B.

The evaluation of an AND-gate requires six en-
crypted bits to be sent over the network. We can
reduce this number to three by applying a little
trick Franklin and Haber used in [5]. Just like the
original protocol, A chooses random bits ¢; and c»
and sends Ej(by @ ¢1) and Eg(b2 @ c2) to B. B
again decrypts these bits as d; and ds but sends
only Ei(di A d2) back to A. Now, it is easy to
prove that

diNdy = (bl@cl)/\(bz@CQ)
= (b1 Ab)D (b1 ANe2)®
(b2 Aer) @ (c1 Aco)

or, applying the homomorphism between XOR and
multiplication mod k,

Ek(bl N b2) = Ek(dl N d2) . Ek(bl N 02) .

Ek(bz A Cl) - Ek(cl A 02)

A just got E(di A ds) from B and she can easily
make an encryption of ¢; A ¢a. Computing Ej(b; A
¢s) is a little more subtle. If she chose ¢3 to be 0,
she can take any encryption of a zero to be that
factor. If she chose ¢y to be 1, she uses Ej(b1)
itself. The last factor, Ey(by A ¢1), is calculated in
an analogous way.

This protocol can do a great job in a Secret
Query Database. Unlike the previous protocol, we
don’t need a universal circuit if we let the client
play the role of A and let the secret function be
her query q itself. The server plays the role of B,
supplying encrypted records as his secret data.

The length of & is an important security param-
eter: if a client is able to compute the factorization
of k, she can decrypt the record. At this moment,
it is possible to factor 512-bit numbers if you are
willing to spend a few thousands of dollars and wait
a few months. The plaintext of the entire database
could be worth this effort, but one single record
probably isn’t. If we use a new 512-bit k for every
record, an attacker has to factor a 512-bit number
for every record he wants. For most databases it
will be cheaper simply to buy the records from the
server.

In spite of the relatively small key length, the en-
cryption of a record still causes a huge data blow:
it’s size is multiplied by a factor of 512. Our records
of i5/8 bytes take 64i, bytes in encrypted form. Of
course, it is intolerable to send this kind of data
over a network. Yet the factors of k£ are not re-
vealed during the protocol, allowing the data to be
reused in multiple evaluations. Again, the server
can publish encrypted records and the public key &
used for the encryption on CD-ROM to drastically
reduce network load.

As we stated above, the evaluation of an AND-
gate needs three encrypted bits to be sent over the
network. If the client’s circuit consists of C' gates,
half of which are NOT-gates or XOR-gates that
require no interaction and half of which are AND-
gates that do require interaction, on the average
96C bytes are to be sent over the network for each
record evaluation.

3.3 Autonomous protocols

The protocols discussed in the two previous sub-
sections require more communication rounds than
strictly necessary. The oblivious transfer based pro-
tocol requires one communication round for per-
forming the oblivious transfer of the input, and an-
other for sending the encrypted circuit. The proba-
bilistic encryption based protocol requires one com-
munication round per AND-gate in the circuit.
Although it is impossible (as discussed in sec-
tion 2) to construct a completely non-interactive
solution, it turns out to be possible to construct
solutions using only one communication round: the
client sends (in one message) an encrypted function
f, and it receives from the server an encrypted re-
sult f(z) in such a way that f remains private to
the client and = remains private to the server. A

protocol that achieves this result in only one com-
munication round is called an autonomous protocol.

Two kinds of autonomous protocols have been
proposed in the literature. The first kind, intro-
duced by Sander and Tschudin ([10, 11]), allows
for a fairly efficient evaluation of polynomials in a
ring of integers modulo n using a homomorphic en-
cryption scheme. However, it is not clear if this
technique can be extended to general boolean cir-
cuits, and hence it does not seem applicable to the
Secret Query Database.

The second kind, introduced by Loureiro and
Molva ([8]), uses a public key encryption system
based on Goppa codes, and allows for the evalu-
ation of functions describable by a matrix multi-
plication. Loureiro and Molva also show how any
boolean circuit evaluation can be done by a matrix
multiplication. However, the representation of a
boolean circuit requires a huge matrix (for a circuit
with [inputs, one of the dimensions of the matrix
is 2!), which renders the technique hopelessly ineffi-
cient for application in the Secret Query Database.
It remains an open problem whether more efficient
representations of boolean circuits as matrices can
be achieved.

Hence, for the current state of the art of au-
tonomous protocols, it seems that these protocols
cannot compete with the protocols discussed in the
sections above.

3.4 Multiparty protocols

Obviously, protocols that solve the problem of mul-
tiparty secure computation can also be applied to
the two-party case. Chaum, Damgard and van
de Graaf present a multiparty protocol in [2] that
starts with the truth table of every gate in the
circuit. Each player in turn receives a “scram-
bled” version of the truth tables from the previous
player, transforms the truth tables by adding his
own encryptions and permutations, commits to his
encryptions and sends these transformed truth ta-
bles on to the next player. When the last player
finished his transformation, all players evaluate the
scrambled circuit by selecting the appropriate row
from the truth tables.

Franklin and Haber present an elegant multi-
party protocol based on group-oriented cryptogra-
phy in [5]. All parties send each other an El-Gamal
alike joint encryption of their input bits and eval-

uate the entire circuit together. The evaluation of
a NOT-gate can be done without interaction while
the evaluation of an AND-gate requires broadcast-
ing encrypted bits and “decryption witnesses”. Fi-
nally, each party sends a decryption witness for the
output bit.

Although these protocols are in many ways
stronger and more general than the two-party pro-
tocols discussed in previous sections, they prove to
be less suitable for our concrete application of a
Secret Query Database. Compared with genuine
two-party protocols, they both use far more net-
work resources. Hence, we will not consider them
in our assessment.

4 Assessment

We compare the two most promising solutions of all
the solutions discussed in section 3. A distinction
is made between (1) the amount of data that can
be published once and for all (e.g. on a CD-ROM),
(2) the amount of data that must be exchanged
once per query (but can be reused when evaluat-
ing the query on successive records) and (3) the
amount of data that must be exchanged for each
individual query evaluation. We call the first kind
of data CD-ROM data, the second kind query setup
data and the third kind query evaluation data. We
consider the (realistic) numerical values discussed
in section 2, and assume a database of n, = 1024
records. Table 1 summarizes the communication
overhead.

For the oblivious transfer based solution, the to-
tal network communication overhead to query the
entire database becomes 375K +1024 - 190K or
about 190 megabytes. For the probabilistic encryp-
tion based solution, this total overhead becomes
1024 - 94K or 94 megabytes.

Although this communication overhead is indeed
high, it is important to note that:

1. Communication overhead can be reduced if the
required security level can be lowered. For ex-
ample, we assumed a 512 bit crypto-system for
the second solution. This number could be re-
duced if the price of the data in each record is
rather small. Similarly, we achieved very high
secrecy of the query, revealing only the num-
ber of gates in the circuit. The communication

overhead can be further reduced if more infor-
mation of the structure of the query is allowed
to leak to the server.

2. Communication overhead can be traded off
against query complexity. For example, in so-
lution 1, if a simpler query language is used,
the size of the universal circuit used in the
protocol can be reduced, strongly reducing the
network overhead.

3. By using agent technology, communication can
be made more efficient: the agents can po-
sition themselves close to one another. Of
course, this assumes that there are trusted
hosts that the agents can migrate to, and since
the Secret Query Database can be solved much
more efficiently using a trusted third party,
one might think at first sight that the use
of agents doesn’t have any advantages. Note
however that, in the agent scenario, the trusted
host doesn’t have to know the Secret Query
Database protocol: the host just has to offer
a secure execution platform. Hence it can be
reused for many similar applications. In con-
trast, a dedicated trusted third party for the
Secret Query Database problem can be made
more efficient, but is only usable for this par-
ticular application. To support new applica-
tions, another server has to be started, or the
existing server has to be reprogrammed.

Given all these considerations, we believe it is fair
to state that secure distributed computing technol-
ogy is ready to be considered for practical applica-
tions.

5 Conclusion

This paper has made an evaluation of the practical
feasibility of secure distributed computing. We pre-
sented a concrete application of this advanced cryp-
tographic technology, the Secret Query Database,
that is a representative instance of a whole class
of interesting applications using secure distributed
computing techniques.

Next, we gave a survey of solutions for the se-
cure distributed computing problem. This survey
was strongly biased towards our concrete appli-
cation: only techniques applicable to the Secret

CD-ROM query setup query evaluation
OT-based | 8n,i,; bytes 3841, bytes 48C,, bytes/record
solution = 32 Mbytes | = 375 Kbytes | = 190 Kbytes/record
PE-based | 64n,is bytes 0 bytes 96C bytes/record
solution = 250 Mbytes = 94 Kbytes/record

Table 1: Summary of communication overhead

Query Database were elaborated in detail, and were
optimized for the case study. Techniques that were
clearly too inefficient for our application were only
shortly mentioned and references to more detailed
treatments were given.

Finally, we assessed the resulting communication
overhead for the two most suitable solutions, lead-
ing to the conclusion that, by trading off security
level and expressiveness of possible queries against
acceptable communication overhead, a practically
implementable solution can be achieved, especially
when agent-technology is involved.

References

[1] M. Abadi and J. Feigenbaum, “Secure circuit
evaluation, a protocol based on hiding infor-
mation from an oracle,” Journal of Cryptology,
2(1), p. 1-12, 1990

[2] D. Chaum, I. Damgard and J. van de Graaf,

“Multiparty computations ensuring privacy of

each party’s input and correctness of the re-

sult,” in Advances in Cryptology—CRYPTO

’87 Proceedings (Lecture Notes in Computer

Science, Vol. 293), ed. C. Pomerance, p.87—

119 , Springer-Verlag, New York, 1988

[3] B. Chor, O. Goldreich, E. Kushilevitz and

M. Sudan, “Private information retrieval,”

Proc. of 36th IEEE Conference on the Founda-

tions of Computer Science (FOCS), p. 41-50,

1995

[4] M. Franklin, “Complexity and security of dis-

tributed protocols,” Ph. D. thesis, Computer

Science Department of Columbia University,

New York, 1993

[6] M. Franklin and S. Haber, “Joint encryp-

tion and message-efficient secure computa-

[6]

[7]

[8]

[9]

[10]

[11]

tion,” Journal of Cryptology, 9(4), p- 217232,
Autumn 1996

0. Goldreich, S. Micali and A. Wigderson,
“How to play any mental game,” Proc. of 19th
ACM Symposium on Theory of Computing
(STOC), p. 218-229, 1987

B. Litow, “Introduction to cryp-
tography,” 1999, available at
URL: http://www.cs. jcu.edu.au/

ftp/web/teaching/Subjects/cp5030/1999/

S. Loureiro and R. Molva, “Privacy for Mobile
Code”, Proceedings of the workshop on Dis-
tributed Object Security, OOPSLA ’99, p. 37—
42.

N. Nisan, “Algorithms for selfish agents”,
Proceedings of the 16th Annual Symposium
on Theoretical Aspects of Computer Science,
Trier, Germany, March 1999, p. 1-15.

T. Sander and C. Tschudin, “On software pro-
tection via function hiding”, Proceedings of the
second workshop on Information Hiding, Port-
land, Oregon, USA, April 1998.

T. Sander and C. Tschudin, “Towards mobile
cryptography”, Proceedings of the 1998 IEEE
Symposium on Security and Privacy, Oakland,
California, May 1998.

