
Fine-Grained Disclosure of Access Policies

Claudio A. Ardagna1, Sabrina De Capitani di Vimercati1, Sara Foresti1,
Gregory Neven2, Stefano Paraboschi3, Franz-Stefan Preiss2,

Pierangela Samarati1, and Mario Verdicchio3

1 Università degli Studi di Milano, 26013 Crema, Italy
{firstname.lastname}@unimi.it

2 IBM Research Zürich, Rüschlikon, Switzerland
{nev,frp}@zurich.ibm.com

3 Università degli Studi di Bergamo, 24044 Dalmine, Italy
{parabosc,mario.verdicchio}@unibg.it

Abstract. In open scenarios, where servers may receive requests to ac-
cess their services from possibly unknown clients, access control is typi-
cally based on the evaluation of (certified or uncertified) properties, that
clients can present. Since assuming the client to know a-priori the proper-
ties she should present to acquire access is clearly limiting, servers should
be able to respond to client requests with information on the access con-
trol policies regulating access to the requested services. In this paper,
we present a simple, yet flexible and expressive, approach for allowing
servers to specify disclosure policies, regulating if and how access control
policies on services can be communicated to clients. Our approach allows
fine-grain specifications, thus capturing different ways in which policies,
and portions thereof, can be communicated. We also define properties
that can characterize the client view of the access control policy.

1 Introduction

Despite the great improvements of ICT systems in access to information and
communication, there are important user- and server-side requirements that are
currently not completely satisfied. On one hand, users want to access resources
without having to deal with the creation of accounts, the explicit memorization
of passwords, or the disclosure of sensitive personal information. On the other
hand, service providers need robust and effective ways to identify users, and to
grant access to resources only to those users satisfying given conditions. User-side
credentials have a great potential to satisfy these requirements. Using creden-
tials, users are freed from the burden of having to keep track of a multitude of
accounts and passwords. With credential-based, or more generically, attribute-
based access control policies, servers can regulate access to their services based
on properties and certificates that clients can present. Such a scenario changes
how the access control works, not requesting servers to evaluate the policies with
complete knowledge of clients and their properties, but rather to communicate
to clients the policies that they should satisfy to have their requests possibly

Sara
Line

permitted. This aspect has been under the attention of the research and devel-
opment communities for more than a decade and several solutions have been
proposed addressing different issues [6, 13–15].

Although the need for supporting attribute-based access control has been
recognized, current emerging practical access control solutions [9] still lack the
ability of working with unknown clients and assume a-priori knowledge of their
credentials and properties. However, requiring the client to know a-priori which
information she needs to present takes away most of the benefits of supporting
attribute-based access control and clearly limits its applicability. The communi-
cation to the client of the policy regulating access to a service is not straight-
forward. For instance, consider a policy restricting access to a service only to
people with US nationality. How should a server communicate such a policy?
Should the server present it completely? Or should it just ask the client to state
her nationality? Clearly, there is not a unique response, and which option is to
be preferred may depend on the context and on the information involved. We
note that communicating the complete policy favors the privacy of the client
(since she can avoid disclosing her properties if they would not satisfy the condi-
tions in the policy). By contrast, communicating only the attributes needed for
the evaluation of the policy favors the privacy of the server (since the specific
conditions in its policy are not disclosed). With respect to the server, differ-
ent portions of a policy might have different confidentiality requirements. For
instance, consider a service open to all people older than 18 and not working
for a company blacklisted at the server. When communicating to the client that
she has to disclose her age and company before accessing the service, the server
might not mind communicating that the service is restricted only to people who
are older than 18 , but might at the same time not want to disclose that the
client will be checked against a blacklist that the server is maintaining.

In this paper, we provide a simple, yet expressive and flexible, approach for
enabling servers to specify, when defining their access control policies, if and
how the policy should be communicated to the client. Our approach applies to
generic attribute-based access control policies and is therefore compatible with
different languages, including logic-based approaches [5] as well as the estab-
lished XACML standard [9]. The contributions of this paper can be summarized
as follows. First (Sections 2-3), exploiting a graphical representation of the access
control policies in terms of their expression tree, we define disclosure policies as
colors (green, yellow, or red) that can be applied to the different nodes in the
tree, ensuring a fine-grained support and providing expressiveness and flexibil-
ity in establishing disclosure regulations. Second (Section 4), we illustrate how
disclosure policies specified by the given coloring are enforced to determine how
the policy should be communicated to the client. Third (Section 5), we identify
different properties of the client policy view. Fourth (Section 6), we briefly il-
lustrate how our approach can provide a support for credential ontologies and
for emerging solutions allowing clients to present a proof of the satisfiability of
given conditions without revealing their properties. Finally, we discuss related
work (Section 7) and give our conclusions (Section 8).

2

2 Preliminary Concepts

We consider a scenario where clients and servers may interact without having
a-priori knowledge of each other. Servers offer services/resources whose access
is regulated by access control policies. Clients have a portfolio of properties
(called attributes) that they enjoy. The client portfolio includes both attributes
in certificates signed by a third party (credentials) and attributes declared by the
client herself (declarations) [4]. We assume that each credential is characterized
by attribute type that identifies the attributes that the credential certifies.

Access control policies at the server side specify the attributes that a client
should have to gain access to the services. The policy applicable to a given ser-
vice can then be seen as a boolean formula over basic conditions of the form
(p,term1, . . . ,termn), where p is a predicate operator and termi, i = 1, . . . , n,

are attributes (e.g., country, birth date) or constant values (e.g., USA,
1970/04/12) corresponding to the operands of the predicate operator. While
our approach can be applied to generic predicates with an arbitrary number
of operands, in the remainder of the paper for concreteness and simplicity, we
consider binary predicate operators, where conditions are expressed according
to the classical infix notation (term1 p term2). A server may specify whether the
attributes appearing in basic conditions must be certified or can be declared by
a client. Requests for a certified attribute a are expressed as c.a, where c is a
symbol denoting a credential. In addition, if attribute a must be certified by a
credential of a given type t, a basic condition c.type=t must be specified in the
policy. Note that the same credential symbol may appear in multiple conditions.
In this case, such conditions refer to, and must be satisfied by, the same cre-
dential. By contrast, if a different symbol is used, the corresponding conditions
can be satisfied by different credentials. For instance, policy c1.type=Passport ∧
c1.country=USA ∧ c2.type=CreditCard ∧ c2.expiration>2010/12/31 states
that access is allowed if a client presents a passport proving US citizenship and
a credit card with expiration date greater than 2010/12/31 .

A policy can be represented as a boolean expression tree as follows.

Definition 1 (Policy tree). Let P be a boolean formula representing a policy.
A policy tree T (N) representing P is a tree where:

– there is a node n∈N for each operator, attribute, and value appearing in P;
– each node n∈N has a label, denoted label(n), corresponding to the operator,

attribute, or value represented by n;
– each node n∈N representing an operator has an ordered set of children,

denoted children(n), corresponding to the roots of the subtrees representing
the operands of label(n).

Note that operators are internal nodes, and attributes and values are leaf
nodes. In the graphical representation of the policy tree, we distinguish nodes
representing constant values (in contrast to attributes or operators) by repre-
senting them with a square. Figure 1(a) illustrates the policy tree representing

3

(a) (b)

Fig. 1. An example of policy tree (a) and of colored policy tree (b)

a policy stating that access is allowed if the client either i) presents an iden-
tity card, or ii) discloses her age and the age is between 18 and 34. Formally:
(c.type=IdCard)∨(age>18∧age<34).

3 Disclosure Policy Specifications

The main goal of this paper is to provide the server with a means to regulate
how its access control policies should be communicated to clients. In fact, the
server might consider its access control policy, or part of it, as confidential. To
provide maximum flexibility and expressiveness, we define a fine-grained ap-
proach where each term and predicate operator appearing in a condition, as
well as each boolean operator combining different conditions, can be subject to
a disclosure policy that regulates how the term, predicate operator, or boolean
operator should be protected and then communicated to the client. In other
words, each node in the policy tree can be associated with a disclosure policy
regulating if and how the existence of the node and its label should be visible
to the client. With respect to the label, a disclosure policy can state whether
the label of a node can be disclosed. With respect to the existence of a node
and therefore the structure of the tree, a disclosure policy can state whether the
structure has to be preserved or can be possibly obfuscated by removing nodes
from the tree.

The disclosure policy associated with each node in the tree is expressed as
a color (green, yellow, or red), which in the figures in the paper corresponds to
the light gray (green), dark grey (yellow), and black (red). The specification of
disclosure policies results in a colored policy tree, formally defined as follows.

Definition 2 (Colored policy tree). A colored policy tree T λ(N ,λ) is a pol-
icy tree T (N) with a coloring function λ:N→{green,yellow,red} that maps each
node in N onto a color in {green,yellow,red}.

4

(a) (b) (c) (d) (e) (f)

Fig. 2. Examples of disclosure policies (a)-(c) and of non well defined colorings (d)-(f)

Figure 1(b) illustrates a possible coloring for the policy tree in Figure 1(a).
The semantics of the different colors, with respect to the release to the client of
the colored node, is as follows.

– Green. A green node is released as it is. For instance, consider the policy tree
in Figure 2(a). Since all the nodes in the policy tree are green, the policy is
disclosed as it is, that is, (age>18).

– Yellow. A yellow node is obfuscated by only removing its label; the presence
of the node as well as of its children is preserved. For instance, consider the
policy tree in Figure 2(b). The disclosed policy is (age>), communicating
to the client that only clients having age greater than a threshold can access
the resource, without disclosing the threshold applied.

– Red. A red node is obfuscated by removing its label and possibly its presence
in the tree. For instance, consider the policy tree in Figure 2(c). The disclosed
policy is composed of attribute age and only reveals to the client that the
policy evaluates attribute age, without disclosing the condition on it.

Note that, while the server has the ability and flexibility of coloring each
and every node in the policy tree, of course a default policy could be applied,
setting to a predefined color all nodes of a tree (or sub-trees) unless differently
specified. Note also the two extremes of the default coloring, corresponding to
having the policy tree all green (the policy is fully disclosed) or all red (nothing
is disclosed). Also, although in principle a node in a policy tree can be arbitrarily
colored (i.e., any disclosure policy can be associated with any node in a tree),
not all the colorings of a policy tree are well defined . A coloring function is well
defined if all the following conditions are satisfied.

– For each green leaf representing a constant value, its sibling representing
an attribute is green, and its parent, representing a predicate operator, is
not red. The reason for this constraint is to not allow cases where the only
information releasable to the client is the constant value against which an
attribute is compared, without releasing neither the attribute nor the pred-
icate operator. Figure 2(d) reports an example of coloring violating this
constraint.

5

– Each green node representing a predicate operator must have at least a non
red child. The reason for this constraint is analogous to the one above. In
fact, releasing a predicate operator (e.g., >, <, =) without its operands would
be meaningless. Figure 2(e) illustrates an example of coloring violating this
constraint.

– For each subtree representing a basic condition on attribute type, the nodes
in the subtree are either all green or all red. The reason for this constraint
is to ensure that if the information that there is a condition on the type
of credential in the policy is released to the client, also the specific type of
credential is disclosed. In fact, it would be meaningless to state that only cre-
dentials of a given type are accepted, without disclosing the type. Figure 2(f)
illustrates an example of policy violating this constraint.

Apart from the constraints above restricting the diversity of colors within
basic conditions of the policy, any color can be assigned to the different nodes
of a policy tree, each producing a different way in which the server may wish to
communicate its policy to the client. In other words, each coloring produces a
possible view of the client on the policy tree.

4 The Transformation Process: Client Policy View

The colored policy tree T λ must be transformed into an equivalent client policy
tree view T ′, which is communicated to the client. T ′ is obtained by applying
transformation rules that: i) remove the label of yellow and red nodes, ii) remove
unnecessary red leaves, and iii) collapse red internal nodes in a parent-child
relationship into a single red node. These transformation rules4 are illustrated
in Figure 3, where white nodes are nodes of any color (i.e., either green, yellow,
or red) and leaf nodes have two nil nodes represented by small black squares.
The transformation rules are classified in three categories, prune, collapse, and
hide label , depending on the role they play in the transformation process, as
described in the following.

Prune. Prune rules operate on internal nodes whose children are leaf nodes.
These rules are intended to remove unnecessary red leaves, if any. Given a subtree
rooted at node n, two kinds of prune rules may apply.

– Red predicate. If node n is red and label(n) is a predicate operator, its red
child (if any) is removed from the tree. We note that n must have either a
green child, representing an attribute, or a yellow child (otherwise the col-
oring function λ characterizing T λ would not be well defined). For instance,
consider condition (age>18) and suppose that both node > and node 18
are red. The obfuscated condition (age) and the release of attribute age

are equivalent with respect to the information disclosed to a client.

4 We report the rules where the right child is red. The case where the left child is red
is symmetric.

6

Prune

Red predicate Red children

=⇒ =⇒ =⇒

Collapse =⇒

Hide label =⇒ =⇒

Fig. 3. Prune, collapse, and hide label rules

– Red children. If all the children of n are red, they are removed from the
tree and λ(n) is set to red, since the release of the operator represented
by n without its operands is meaningless. For instance, consider condition
(age>18) and suppose that age and 18 are red and > is yellow. The release
of the obfuscated condition () is meaningless for a client and can then
be considered equivalent to the release of one leaf red node.

Collapse. The collapse rule operates on internal red nodes and removes their
non-leaf red children, if any. Given a subtree rooted at a red node n with a red
non-leaf child n′, node n′ is removed from the tree and its children replace n′

in the ordered list of the children of n. This rule, recursively applied, collapses
all red nodes forming a path in a single red node, since their labels have been
suppressed and their presence in the policy tree can be obfuscated. For instance,
consider the policy tree in Figure 1(a) and suppose that nodes ∨ and ∧ are
red. The release of the obfuscated condition (c.type=IdCard) ((age>18)
(age<34)) does not provide any additional information to a client with respect
to the separate release of each condition.

Hide label. Hide label rules operate on yellow and red nodes by removing their
labels.

The transformation process works by traversing the tree with a post-order
visit and, at each node, applies the rules in the order prune, collapse, and hide.
Figure 4 illustrates the pseudocode of the transformation algorithm that takes
a colored policy tree T λ as input and returns the corresponding policy tree view
T ′. The algorithm first initializes T λ to T ′, by assigning N ′ and λ′ to N and λ,
respectively. It then performs a post-order visit of T ′. For each visited node n,

7

INPUT: T
λ(N ,λ) /* colored policy tree */

OUTPUT: T
′(N ′,λ′) /* policy tree view */

MAIN

N
′ := N

λ
′ := λ

let n⊤ be the root of T
′

Transform(n⊤)
return(T ′)

TRANSFORM(n)
/* visit, in the order, the children of n */
for each ni∈children(n) do Transform(ni)
red children := {ni∈children(n): λ

′(ni)=red}

/* prune rules */
if ∀ni∈children(n), children(ni)=∅ then /* internal nodes whose children are leaf nodes */

if λ
′(n)=red and label(n) is a predicate operator then /* red predicate */

remove red children from children(n)
N

′ := N
′ \ red children

if children(n)=red children then /* red children */
children(n) := ∅
N

′ := N
′ \ red children

λ
′(n) := red

/* collapse rule */
if λ

′(n)=red then /* internal red nodes */
for each ni∈red children s.t. children(ni) 6=∅ then /* non-leaf red children of n */

replace ni with children(ni) in children(n)
N

′ := N
′ \ {ni}

/* hide label rules */
if λ

′(n)=red ∨ λ
′(n)=yellow then label(n) := /* red and yellow nodes */

Fig. 4. Algorithm that transforms a colored policy tree into a policy tree view

function Transform is recursively called on the children of n and the transfor-
mation rules in Figure 3 are applied to n as stated above. The computational
cost of the transformation algorithm is O(|N |) since it performs a post-order
visit of T λ, and the operations executed for each visited node have constant
cost.

Example 1. Consider the colored policy tree in Figure 5(a). The algorithm in
Figure 4 transforms the tree as follows. Condition (c.type=IdCard) is preserved
since it is composed of green nodes only. In the subtree representing condition
(age>18), the label of the yellow node 18 is removed (the structure of the subtree
is instead preserved, since both node age and node > are green). Note that the
node representing value 18 is transformed into a circle node, since we hide the
fact that the original node represents a value. The subtree representing condition
(age<34) is pruned, since it contains only red nodes. The visit then proceeds
with red node ∧ that cannot be collapsed with the red leaf node resulting from
the pruning of subtree representing (age<34). Finally, the root node is visited
and the collapse rule is applied, since the root has a red non-leaf child. Figure 5(b)
illustrates the resulting policy view, where the red leaf represents a suppressed
condition.

8

(a) (b)

Fig. 5. An example of colored policy tree (a) and corresponding policy tree view (b)

5 Properties of the Client Policy View

Given a policy tree view T ′ over a colored policy tree T λ, we identify different
properties that characterize T ′. These properties are useful for the server to de-
cide whether the policy view is meaningful for the client or the application of the
disclosure policies results in a view that does not represent the original policy in
a “fair way”. For instance, consider the colored policy tree T λ in Figure 5(a) and
suppose that the only information visible in a policy tree view over T λ is node
age. In this case, a client receiving this policy tree view can only decide to release
her age. The server can use this information to evaluate the two conditions on
attribute age and permit or deny the access depending on whether these condi-
tions are satisfied or not. The policy view is then meaningful for the client since
it requests an attribute that is sufficient for evaluating the policy. The notions
of minimum disclosure collection of a colored policy tree T λ and of a policy
view T ′ are introduced to formally capture the concept of information that per-
mits policy evaluation. In the definition of the minimum disclosure collection,5

conditions on attribute type of credentials have to be treated differently than
conditions on other attributes. As already discussed in Section 3, these condi-
tions are visible, or invisible, in their entirety. We then consider such conditions
as atomic complex attributes of the policy whose label is the condition itself.
In the following, when clear from the context, we will use the term attribute to
refer either to an attribute a or to a complex attribute (c.type p value). The
minimum disclosure collection can now be formally defined as follows.

Definition 3 (Minimum disclosure collection - T λ). Let T λ(N ,λ) be a
colored policy tree. The minimum disclosure collection M of T λ is a set

5 A simple method consists in transforming T
λ into an equivalent tree representing

the policy in disjunctive normal form; each clause of the policy corresponds to a set
that contains the attributes appearing in the clause itself.

9

(a) (b)

Fig. 6. An example of minimum disclosure collection of a colored policy tree (a) and
corresponding policy tree view (b)

{M1, . . . , Mn} of sets, where each Mi, i = 1, . . . , n, contains the labels of at-
tributes whose knowledge permits the evaluation of the policy represented by T λ.

For instance, the policy represented by the colored policy tree in Figure 5(a)
can be evaluated if the client releases either a credential of type IdCard or
her attribute age. As illustrated in Figure 6(a), the corresponding minimum
disclosure collection is then M={M1,M2}, with M1={(c.type = IdCard)} and
M2={age}.

The definition of the minimum disclosure collection of a policy view T ′ is
complicated by the fact that T ′ can include red and/or yellow nodes, thus mak-
ing difficult the determination of the attributes needed for policy evaluation. As
an example, consider the policy tree view in Figure 5(b). Since the root node is
red, a client does not know how the two conditions involving c.type and age are
combined in the policy. In this case, the release of a subset of the information
mentioned in the policy may not be sufficient for evaluating the corresponding
policy. A client can then take a safe approach by assuming that the attributes
appearing as descendants of red/yellow nodes are always all needed for policy
evaluation. Intuitively, this is equivalent to say that red/yellow nodes are consid-
ered as ∧ nodes. By taking into account this observation, the minimum disclosure
collection of a policy tree view T ′ can be defined as follows.

Definition 4 (Minimum disclosure collection - T ′). Let T ′(N ′,λ′) be a
policy tree view, where internal red/yellow nodes are considered as ∧ nodes. The
minimum disclosure collection M′ of T ′ is a set {M ′

1, . . . , M
′
n} of sets, where

each M ′
i
, i = 1, . . . , n, contains the labels of attributes whose knowledge, according

to the client view, permits the evaluation of the policy represented by T ′.

For instance, the minimum disclosure collection of the policy tree view in
Figure 6(b), is M′={M ′

1}, with M ′
1={(c.type = IdCard),age}}, which is ob-

10

tained by considering the red root node as a ∧ node; the red leaf node indicates
that a condition of the original policy tree has been removed and can be ignored
for the computation of M′.

We are now ready to define the first property characterizing a policy tree
view T ′, which we call fair policy view . Intuitively, a policy tree view T ′ is a fair
policy view over T λ if M′ is a subset of M. According to Definitions 3 and 4,
this means that T ′ represents a subset of the different possible combinations of
attributes and/or credentials that the client can release for policy evaluation.
The following cover relationship is introduced for comparing the sets in the
minimum disclosure collections of T λ and T ′.

Definition 5 (Cover). Let T λ be a colored policy tree, T ′ be a policy tree view
over T λ, and M and M′ be their minimum disclosure collections. We say that
M ′∈M′ covers M∈M, denoted M⊑M ′, iff the following conditions hold:

1. ∀l∈M such that l is a certified attribute, then l∈M ′;
2. ∀l∈M such that l is a declared attribute, then l∈M ′ or c.l∈M ′;
3. ∀bi∈M such that bi is a complex attribute, then bi∈M ′.

For instance, with respect to the minimum disclosure collections in Figures 6(a)
and 6(b), it is easy to see that M1 ⊑ M ′

1 and M2 ⊑ M ′
1. The notion of fair policy

view can be now defined as follows.

Definition 6 (Fair policy view). Let T λ be a colored policy tree, T ′ be a policy
tree view over T λ, and M and M′ be their minimum disclosure collections. T ′

is a fair policy view over T λ if ∀M ′∈M′, ∃M∈M s.t. M⊑M ′ and M ′⊑M.

In addition to fair, a policy tree view T ′ can also be characterized as not-fair
for at least one set in M′, over-requesting for all sets in M′, or pre-evaluable.
The evaluation of these properties of a policy view is useful to the server for
deciding whether the disclosure policy specifications result in a view that can be
communicated to a client. A not-fair policy view means that the policy tree view
has been obfuscated by removing too much information of the original colored
policy tree. There is then at least one set M ′ in the minimum disclosure collection
M′ of T ′ that does not cover any set in the minimum disclosure collection M
of T λ. In this case, if the client releases the information in the set M ′, the
policy cannot be evaluated, since some information is missing. An over-requesting
policy view means that the policy tree view requires more information than
the minimum information needed for evaluating the corresponding policy. This
happens, for example, when the label of a disjunction node has been obfuscated
by coloring it in red/yellow. In this case, according to Definition 4, the red/yellow
node is considered as a conjunction and then all the descendant attributes appear
in a single set M ′. Although more information than necessary is released, a client
may still have the possibility to gain access, if the released information satisfies
the corresponding policy. For instance, the policy tree view in Figure 5(b) is
over-requesting since M′={M ′

1}, and M ′
1={(c.type = IdCard),age}} includes

both a condition on type and attribute age, even if only one of them would be

11

(a) (b)

Fig. 7. An example of pre-evaluable policy tree view

sufficient for evaluating the corresponding policy. It is also important to note
that even if T ′ is a fair or an over-requesting policy view over T λ, a client does
not have any guarantee that after releasing the information required by the
policy view the access will be permitted. This guarantee holds only when the
client releases a set of attributes/credentials involved in conditions that can all
be evaluated at the client side and that form a set in the minimum disclosure
collection of T ′. In this case, if such conditions evaluate to true at the client side,
they will evaluate to true at the server side. If the client can evaluate at her side
all the conditions that form a set in the minimum disclosure collection of T ′, we
say that T ′ is a pre-evaluable policy view , as formally defined in the following.

Definition 7 (Pre-evaluable policy view). Let T λ be a colored policy tree,
T ′ be a policy tree view over T λ, and M and M′ be their minimum disclosure
collections. T ′ is a pre-evaluable policy view if T ′ is a fair or an over-requesting
policy view over T λ and there is at least one M ∈ M such that all the values
and predicates in the conditions involving the attributes in M correspond to green
nodes in T ′.

For instance, the policy tree view in Figure 7(b) is an over-requesting, pre-
evaluable representation of the colored policy tree in Figure 7(a).

6 Certificate Ontologies and Provable Conditions

In this section we briefly comment on the possibility of including certificate
ontologies and provable conditions in our approach.

Certificate ontologies. Each credential in the client portfolio has a type that
univocally determines all the other attributes appearing in the credential (i.e.,
all the credentials of the same type certify the same set of attributes). Credential

12

types and their structure are known to both clients and servers and are organized
through an ontology, which is shared among them. Each credential type in the
ontology inherits all the attributes of its ancestors. The request for a credential
of a given type t implicitly requires also all the attributes characterizing cre-
dentials of type t, if not differently specified. For instance, if credentials of type
IdCard are characterized by attributes name, birth date, and address, condi-
tion (c.type=IdCard) in the policy implicitly requires the disclosure of attributes
name, birth date, and address. We use notation t ⊲ a to denote that creden-
tials of type t certify attribute a. With reference to our example, IdCard ⊲ name,
IdCard ⊲ birth date, and IdCard ⊲ address. The definition of cover relation-
ship (Definition 5) can be easily revised to take into consideration the above
implication between a credential type and the attributes that it certifies. A cer-
tified attribute l=c.a in M can be covered by the presence in M ′ of either l or
basic condition (c.type=t), where t ⊲ a. Analogously, a declared attribute l=a

in M can be covered by the presence in M ′ of either l, c.l, or basic condition
(c.type=t), where t ⊲ a. As an example, the presence of attribute c1.name in M

can be covered by the presence of basic condition (c1.type=IdCard) in M ′.

Provable conditions. Modern technologies (e.g., U-Prove and Idemix [7]) per-
mit a client to prove that her attributes satisfy a given condition, without re-
vealing to the server any information about the attributes on which the con-
dition is evaluated. As an example, the client can provide the server with a
proof that (age>18) instead of releasing her age. Our model can be easily ex-
tended to handle this possibility. Conditions that can be proved by the client
are represented in the policy tree by marking provable the subtree representing
the condition itself. Clearly, a provable condition can only be a green subtree,
since the client cannot build a proof for a condition that she does not know.
Therefore, similarly to what done for conditions on credential types, provable
conditions are treated as atomic elements for the computation of M and M′

and are released to the client unchanged. The client who receives a request
including a provable condition can decide to release either a proof, or the at-
tributes necessary to evaluate the condition at the server side. Figure 8 illus-
trates an example of a colored policy tree and of the corresponding policy tree
view where the double circled nodes denote the condition that can be proved
by the client (i.e., (age>18)∧(age<34)). In this example: M={M1,M2}, with
M1={(c.type = IdCard)} and M2={(age>18)∧(age<34)}; and M′={M ′

1},
with M ′

1={(age>18)∧(age<34)}. Since M2⊑M ′
1, T ′ is a fair and pre-evaluable

policy view over the colored policy tree.

7 Related Work

The work in [3] first introduced the idea of providing fine-grained disclosure of
server policy within a proposal extending XACML to support credentials, dialog
management as well as more expressive conditions within policies. However this
proposal considers only a limited set of policy disclosure regulations.

13

(a) (b)

Fig. 8. An example of colored policy tree with a provable subtree (a) and the corre-
sponding policy tree view (b)

Other related work comprises proposals aiming at protecting the client port-
folio and information (e.g., [1, 2, 8, 11, 12]) and proposals enforcing trust nego-
tiation between client and server (e.g., [6, 13–15]). In particular, [15] proposes
a graph-based model for protecting the server policies released during gradual
trust establishment. Each node n in the graph represents a policy that can be dis-
closed only if all the nodes along the path from the node representing the client
request to n have been satisfied. This solution does not permit the selective dis-
closure of policies, but only to increase/decrease the protection of each node by
moving it in the graph. The PRovisional TrUst NEgotiation (PROTUNE) [6]
framework partially overcomes this issue, by identifying private conditions that
cannot be disclosed to the client. These conditions, however, cannot be simply
removed from the policy, since the client must be aware that, if a condition has
been obfuscated, her request could be denied although the portion of the policy
released is satisfied by the disclosed credentials. The approach illustrated in this
paper is complementary to these solutions, since it can be applied at each step of
the negotiation process to further limit the disclosure of the server policy. Also,
our model permits to specify disclosure restrictions at a finer granularity level.

The work in [10] proposes a solution based on Identity Based Encryption that
permits client-server interaction, while disclosing neither the client portfolio nor
the server policy. The goal of our work is different since we aim at supporting
selective disclosure of the server policy.

8 Conclusions

We presented a flexible and expressive approach for allowing the server to regu-
late how access control policies on its services should be communicated to clients
requesting access. Our approach provides fine granularity in the specification of
disclosure policies, thus capturing different ways in which the server may wish

14

to communicate its policy. Also, our solution considering generic access con-
trol policies can be applied to different existing access control solutions, nicely
complementing them with policy disclosure functionalities. To demonstrate the
feasibility of the approach, we are currently implementing it within an extension
of the XACML language for the support of credentials.

Acknowledgments

This work was supported in part by the EU within the 7FP project “PrimeLife”
under grant agreement 216483 and by the Italian Ministry of Research within
the PRIN 2008 project “PEPPER” (2008SY2PH4).

References

1. Ardagna, C., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati,
P.: Minimizing disclosure of private information in credential-based interactions: A
graph-based approach. In: Proc. of PASSAT 2010. Minneapolis, USA (Aug 2010)

2. Ardagna, C., De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Samarati,
P.: Supporting privacy preferences in credential-based interactions. In: Proc. of
WPES 2010. Chicago, USA (Oct 2010)

3. Ardagna, C., De Capitani di Vimercati, S., Paraboschi, S., Pedrini, E., Samarati,
P., Verdicchio, M.: Expressive and deployable access control in open Web service
applications. IEEE TSC (2010, to appear)

4. Bonatti, P., Samarati, P.: A unified framework for regulating access and informa-
tion release on the Web. JCS 10(3), 241–272 (2002)

5. Bonatti, P., Samarati, P.: Logics for authorizations and security. In: Chomicki, J.,
et al. (eds.) Logics for Emerging Applications of Databases. Springer-Verlag (2003)

6. Bonatti, P., Olmedilla, D.: Driving and monitoring provisional trust negotiation
with metapolicies. In: Proc. of POLICY 2005. Stockholm, Sweden (June 2005)

7. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Proc. of EUROCRYPT
2001. Innsbruck, Austria (May 2001)

8. Cimato, S., Gamassi, M., Piuri, V., Sassi, R., Scotti, F.: Privacy-aware biomet-
rics: Design and implementation of a multimodal verification system. In: Proc. of
ACSAC 2008. Anaheim, USA (Dec 2008)

9. eXtensible Access Control Markup Language (XACML) v2.0 (Feb 2005),
http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.pdf

10. Frikken, K., Atallah, M., Li, J.: Attribute-based access control with hidden policies
and hidden credentials. IEEE TC 55(10), 1259–1270 (2006)

11. Gamassi, M., Lazzaroni, M., Misino, M., Piuri, V., Sana, D., Scotti, F.: Accuracy
and performance of biometric systems. In: Proc. of IMTC 2004. Como, Italy (2004)

12. Gamassi, M., Piuri, V., Sana, D., Scotti, F.: Robust fingerprint detection for access
control. In: Proc. of RoboCare Workshop 2005. Rome, Italy (May 2005)

13. Irwin, K., Yu, T.: Preventing attribute information leakage in automated trust
negotiation. In: Proc. of CCS 2005. Alexandria, USA (Nov 2005)

14. Lee, A., Winslett, M., Basney, J., Welch, V.: The Traust authorization service.
ACM TISSEC 11(1), 1–3 (2008)

15. Yu, T., Winslett, M.: A unified scheme for resource protection in automated trust
negotiation. In: Proc. of IEEE S&P 2003. Berkeley, USA (May 2003)

15

	copyright: © Springer Berlin / Heidelberg, Lecture Notes in Computer Science (2010)http://www.springerlink.com/content/970lx51068v32224/fulltext.pdf

