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Abstract

Cryptography is an ancient craft, but relatively young as a true science. Tech-
niques that offered a reasonable level of protection many centuries ago, are
clearly insufficient to meet the communication needs of today’s digitalized soci-
ety. Until the 1980s however, cryptographic design remained a craft, rather than
a science: schemes were proposed with at most an intuition for their security, the
sole criterion being resistance against attacks after years of exposure to experts.

A more modern approach is that of provable security. This approach requires
the designer of a scheme to first clearly state what is understood under the secu-
rity of the scheme. Next, a mathematical proof is needed showing that the only
way to break the scheme is either by attacking an insecure underlying crypto-
graphic building block, or by realizing a mathematical breakthrough. Provable
security has evolved from a toy for theoreticians to an important scheme char-
acteristic that is taken into account in the decision of industry standards.

In this thesis, we study the provable security of selected cryptographic prim-
itives. We first distill useful yet feasible security notions, and subsequently prove
the security of existing and new schemes under these notions.

The first part focuses on identity-based identification and signature schemes.
These are cryptographic primitives providing entity and message authentication,
respectively, that allow the public key of a user to be simply his identity (instead
of a random string that has to be securely attributed to the user). As a first step,
we present a general framework of security-preserving transformations between
related primitives. We then use this framework as a tool to prove (and in a single
instance, break) the security of schemes from 13 different “families” that were
proposed in the literature over the last two decades, but that lacked a security
proof prior to our work.

In the second part of this thesis, we discuss transitive signature schemes.
These are signature schemes that allow to sign edges of a graph such that any
user (and not just the signer) can, from two signatures on adjacent edges {i, j}
and {j, k}, compute a third signature for the direct edge {i, k}. We answer
an open question regarding the security of a particular scheme, and present
a number of new, provably secure schemes offering efficiency advantages over
existing schemes.
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Chapter 1

Introduction

1.1 Provably Secure Cryptography

Cryptography is an ancient craft, but relatively young as a true science. As
early as 4000 years ago, the Egyptians occasionally obscured their inscriptions
by deviating from standard hieroglyphic notation to make the message seem
more important. The Spartans wrote secret messages along the axis of a stick
with a strip of parchment spiralled around it; the parchment was unwound for
transportation, so that the recipient could recover the message by rewinding it
around a stick of the same diameter. Julius Caesar even has a cipher named after
him that replaces every letter with that three positions further in the alphabet.

While such techniques may have offered a reasonable level of protection in
times when a vast majority of the population was illiterate to begin with, they
are clearly insufficient to meet today’s communication needs. With the Internet
as a global information infrastructure connecting an ever-increasing number
of businesses, institutions and governments worldwide, information that used to
take a considerable effort to retrieve is now readily available at the click of mouse.
The flip side of this wonderful evolution, however, is a wider exposure to possibly
malicious users, while at the same time putting higher prizes at stake. With legal
protection appearing too slow and cumbersome to act as an effective deterrent
in the fast-moving world of information technology, prevention of attacks by
technical means is more important than ever.

Not surprisingly, public interest in cryptography boomed around the same
time that digital information started to claim its place in society. The seventies
saw the birth of the block cipher DES (Data Encryption Standard [Nat77]),
but the real breakthrough came with the conceptual invention of public-key
cryptography by Diffie and Hellman [DH76] in 1976. No longer did Alice have
to meet Bob in person to agree on a common key that they could later use to
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protect their conversation; instead, Diffie and Hellman suggested to use pairs
of keys, consisting of a public and a private key. Alice would publish her public
key, but keep her private key for herself. When Bob wants to send a message to
Alice, he uses her public key to encrypt the message; the resulting ciphertext can
only be decrypted using the corresponding private key, which only Alice knows.
Obviously, the keys must be related in some way for this mechanism to work,
but the scheme would be designed in such a way that it is infeasible to deduce
the private key from the public key within a reasonable amount of time. Two
years later, Rivest, Shamir and Adleman published the RSA algorithm [RSA78]
as the first construction for such a public-key cryptosystem after its inventors,
a contribution for which they were awarded the ACM Turing Award in 2002.
Many alternative constructions based on various problems followed, but most
of these were later found to be insecure. Among those that are still considered
secure today (including the ElGamal [El 84], Rabin [Rab79] and Paillier [Pai99]
cryptosystems), RSA remains the most widely used today.

But cryptography is not only about keeping eavesdroppers from listening in
on a private conversation; it is concerned with information security in a broader
sense of the word. The following is a list of four basic goals [MvOV96] envisaged
by different cryptographic primitives:

• Confidentiality, the most well-known of the four, is to hide information
from unauthorized readers.

• Integrity ensures that the information that reaches the recipient was not
modified in transit. While it is generally not possible to prevent unautho-
rized tampering of data, cryptography does provide techniques to detect
such behavior.

• Authentication provides a guarantee that entities are who they claim to be
(entity authentication) and that messages originate from the sender they
appear to originate from (message authentication). Although these two
guarantees are closely related, they are essentially different: the former
ensures the active presence of an entity at a particular instant in time,
while the latter certifies who created a piece of information in the past
and the fact that it has not been altered since.

• Non-repudiation commits an entity to his actions or statements, so that
he cannot deny them at a later time.

Many primitives realizing these goals have been suggested over the past three
decades. Summarizing all of them would take us far beyond the scope of this
text, we refer to Menezes et al.’s Handbook of Applied Cryptography [MvOV96]
instead. Yet still, these are not the final goals of cryptography. The above primi-
tives can be further combined into complex protocols achieving higher-end goals
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such as secure channels [FKK96, CK01, Nam02], digital cash [Cha83, JY96],
electronic voting [Ben87, Sch99] and certified e-mail [SR98], to name a few.

Provable Security and the Random Oracle Model. The invention of
public-key cryptography sparked an enormous interest in information security
from the academic world. For at least another decade, however, the design of
cryptographic primitives and protocols remained more of a craft, rather than a
true science. Schemes were proposed with at most an intuition why they might
be hard to break, if any at all, the only real security criterion being resistance
against attacks after years of exposure to the scrutiny of experts in the field.

In the early eighties, Goldwasser and Micali [GM84] pioneered the approach
of provable security, sometimes more appropriately called reductionist secu-
rity, which was further brought to practice by Bellare and Rogaway during
the nineties [Bel98]. The idea of provable security is to provide, along with a
scheme, a mathematical proof showing that any attack on the scheme can be
transformed into an attack on an underlying primitive or mathematical prob-
lem, thereby directly tying the security of the scheme to the security of its
building blocks. Obviously, one cannot hope to build secure schemes out of in-
secure building blocks, but it is fairly easy (and unfortunately quite common)
to design schemes that use the strongest cryptographic primitives around, yet
are completely insecure. A security proof guarantees that any weakness in the
scheme must be related to a corresponding weakness in one of the subcompo-
nents, and that no additional vulnerabilities were introduced by the way the
scheme glues the components together. While this doesn’t completely exclude
the scheme from being broken, it does minimize the chances of an adversary
attacking it: he either has to force a mathematical breakthrough, or break an
insecure subcomponent. The former type of attack is highly unlikely, the latter
is easily protected against by replacing the insecure component with a secure
alternative. (Two other possibilities of attacks are errors contained in the proof,
and adversaries stepping out of the model. While the rigorousness of mathe-
matical proof methodology serves as a safeguard against the first, it emphasizes
the need for diligently written out security proofs and careful verification by
authors and peer researchers. The second is much harder to protect against: a
proof inevitably needs an adversarial model, and does not provide any guar-
antees against adversaries that go beyond this model. Good examples of such
attacks are timing [Koc96] and power analysis [KJJ99] attacks, where the adver-
sary extracts additional information by carefully measuring the time or energy
required to perform cryptographic operations.)

Motivated by the lack of provably secure constructions that were efficient
enough to replace heuristic schemes in use around the mid-nineties, Bellare and
Rogaway [BR93a] suggested the random oracle model as a compromise between
theory and practice. The idea is that security is proven in an imaginary model
where all algorithms, including the adversary, have access to an oracle H(·)
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that implements a random function. When brought to practice, the random
oracle is replaced with a cryptographic hash function such as SHA-1 [Nat95] or
RIPEMD-160 [DBP96], which is hoped to sufficiently mimic the unpredictable
behavior of a true random oracle to preserve security in the real world.

A lot of controversy exists in the cryptographic community about the true
value of security proofs using random oracles (we provide more details of this
discussion in Section 2.2), and indeed, they should be treated with care. The-
oretically speaking, the random oracle model reduces the value of a security
proof to at most a good heuristic, and a number of (though mostly contrived)
schemes separating it from the standard model have been discovered [CGH98,
Nie02, GK03]. On the other hand, it has proven to be a most valuable tool in
proving the security of new schemes and old practical schemes resisting both
attack and proof in the standard model for years. Moreover, a scheme that
can be proven to achieve a clear security goal in the random oracle model is
still strongly preferable over completely ad-hoc protocol design. It is with this
precaution in mind that we use random oracles in this work as well.

1.2 Summary and Main Contributions

In this thesis, we continue the line of provable security by targeting selected
cryptographic primitives for which we first distill a useful and realistic security
notion, and then proceed to prove the security of existing schemes that lacked a
proof prior to our work, or of completely new schemes that offer advantages over
existing ones. More specifically, this text is subdivided in two main parts. The
first focuses on identity-based identification and signature schemes, for which we
found a security-preserving transformation that we apply to prove the security
of about a dozen schemes proposed over the last two decades and new schemes
surfaced from these [1]. The second part of this thesis treats transitive signature
schemes, where we answer an open question raised by [MR02b] and introduce
new schemes offering considerable efficiency improvements over existing ones
[3]. Some older work on secure distributed computations [8, 10, 9, 6, 5, 4, 2] and
application integration [7] was not included here. We now proceed to discuss
our contributions in more detail.

The results on identity-based identification schemes are joint work with Mihir
Bellare and Chanathip Namprempre, the results on transitive signatures are
joint work with Mihir Bellare.

1.2.1 Identity-based Identification Schemes

Identification schemes. Authentication is a basic need in securing communi-
cation. As already pointed out in Section 1.1, we can distinguish between entity
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authentication where an entity merely proves to be “alive” at the time of proto-
col execution, and message authentication that guarantees a received message to
be identical to an original message created by a correspondent. Protocols real-
izing the former are called identification schemes, while message authentication
codes (in the symmetric-key setting) and signature schemes (in the public-key
setting) are used to realize the latter.

A standard identification (SI) scheme is an interactive protocol to provide
entity authentication. Symmetric identification schemes are an essential part of
key distribution protocols such as the Kerberos [KN93] and Needham-Schroeder-
Lowe [NS78, Low96] protocols, but we will focus on the asymmetric case here.
A prover P identifies himself to a verifier V by convincing V that he knows the
private key sk corresponding to his public key pk . A trivial solution would be
to let the prover simply send the secret key to the verifier, but that would allow
an eavesdropper to impersonate the prover after listening in on a single conver-
sation. To circumvent this problem, identification schemes typically involve a
challenge-response protocol that does not reveal the secret key itself.

Identification schemes are used in practice to allow so-called smart cards
(plastic “credit” cards containing a tamper-resistant microchip) to identify as
a properly issued card to the card reader. They are also applied in the military
as Identification Friend or Foe (IFF) systems [MvOV96], to distinguish friendly
from hostile aircraft.

Identity-based cryptography. A crucial aspect when implementing public-
key cryptography in practice is to provide a secure way of linking users to
their public keys. The standard solution is to set up a public key infrastructure
(PKI), where trusted entities issue certificates to assert that a public key belongs
to a certain user. A certificate typically contains the identity of the user, the
public key, and the trusted entity’s signature. Two users wishing to communicate
securely first need to exchange certificates or look up each other’s certificate in
a public directory.

In 1984, Shamir [Sha84] suggested identity-based cryptography as a more
efficient solution that eliminates the need for user certificates. The idea is to
design cryptosystems for which any bit string can be a valid public key, thereby
allowing a user’s public key to be simply his identity or email address. Of course,
the rightful owner of an identity needs some piece of secret information that gives
him a computational advantage over other users. He cannot generate this secret
by himself, because then an attacker could do the same thing. For this purpose, a
trusted key generation center is set up to generate a single domain-wide master
public key mpk and a corresponding master secret key msk . The master public
key is published as a domain-wide parameter, while the master secret key is
kept secret by the key generation center that uses it to compute the user secret
key usk corresponding to the user’s identity. The center is assumed to issue user
secret keys over a secure or out-of-band channel.
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State of the area prior to this work. Following the work of Fiat and
Shamir [FS86], numerous identification schemes based on zero-knowledge proto-
cols have been proposed [FS86, Bet88, CEvdG88, FFS88, MS88, GQ89, Gir90,
OO90, OS90, Sch90, Gir91, BM92, Oka93, FF02]. Most of these follow a canoni-
cal three-move structure in which the prover starts the protocol with a commit-
ment, the verifier replies with a challenge, and the prover complies by sending
an appropriate response. Fiat and Shamir already showed how hash functions
can be used to transform such canonical identification schemes into signature
schemes, an approach that was later proven to be security-preserving in the
random oracle model [OO98, PS00, AABN02].

Many of the above schemes were actually proposed as identity-based identi-
fication (IBI) and corresponding identity-based signature (IBS) schemes [FS86,
GQ89, Oka93, Gir90, Bet88]. The IBS scheme in Shamir’s paper [Sha84] in-
troducing the concept of identity-based cryptography was proposed directly,
without an underlying SI or IBI scheme. The introduction of pairings over el-
liptic curves to cryptography [JN03] caused a new wave of pairing-based IBS
schemes being proposed [SOK00, Pat02, Hes03, CC03, Yi03].

When it comes to provable security, however, we found that the above prim-
itives and the relations between them are not fully understood. While a consid-
erable amount of work exists on the provable security of identification schemes,
it is limited to standard identification schemes and doesn’t take into account
the additional risks that are introduced by the multi-user setting of identity-
based schemes. The situation for IBS schemes is somewhat better. A definition
of security for IBS schemes exists [CC03], and a general transform was even
proposed [DKXY03] that under certain conditions turns secure standard signa-
ture (SS) schemes into IBS schemes. Several IBS schemes, however, have not
yet been proven secure (the most famous example being Shamir’s original IBS
scheme [Sha84]), either because they cannot be obtained as the application of
the general transformation to a secure SS scheme, or because nothing is known
about the security of the SS scheme in question.

Our contributions. Our work shines a light in the darkness surrounding the
provable security of IBI and IBS schemes by defining a clear security notion for
IBI schemes, proving general transformations between some of the notions, and
proving the security of known schemes that we revisit, or new schemes that we
surface. We briefly summarize the different steps taken here, but we would like
to refer the reader to Section 3.1 for a more detailed but still fairly accessible
summary of our results in this area.

• As a first step, we extend the security notions of SI schemes under passive,
active and concurrent attack to the identity-based setting by additionally
allowing the IBI adversary to initiate, interact with and corrupt identities
of its choice. Our definition is inspired by security notions of other identity-
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based primitives, but formalizing it correctly was not a trivial task due to
the interactivity of the problem and the complexity of the attack model.

• We show how to construct a trivial yet inefficient IBI scheme from any SI
scheme using certificates, and prove it secure under the new notions.

• We define a class of SI schemes that we call convertible SI (cSI) schemes,
and show how any such cSI scheme can be transformed into a correspond-
ing IBI scheme while preserving provable security. This transform will be
our main tool in analyzing the security of IBI schemes. We observe that a
similar transform turning convertible SS (cSS) schemes into IBS schemes
is a generalization of the transform of Dodis et al. [DKXY03].

• We also observe that the Fiat-Shamir transform [FS86] turning canonical
SI schemes into SS schemes does not generally extrapolate to the identity-
based case, and give a counterexample supporting this observation. We
present a modified transformation that does guarantee preservation of
security when applied to general IBI schemes.

• The main technical part of our work lies in going through a legacy of two
decades of proposed SI, IBI and IBS schemes and proving their security
based on our general transformation, surfacing previously undefined cSI
schemes where necessary, or in one case [Gir90, SSN98] showing an attack
when we found the scheme to be insecure. Much to our surprise, we also
found that almost all non-trivial IBS schemes known today – including
the famous one by Shamir [Sha84] – can be seen as the result of applying
our transforms to an appropriate cSI scheme. Therefore we believe that,
apart from reducing the burden of proving the security of IBS schemes to
that of SI schemes (which appears to be a much easier task indeed), our
framework captures a more general idea of how IBI and IBS schemes are
constructed, and helps in unifying our view of the area.

• Lastly, we consider the sole exception we found in the literature of a secure
IBI scheme that cannot be seen as the transformation of a corresponding
cSI scheme. We prove the security of this scheme directly as an IBI scheme
(a result that was missing in the original work [Oka93]), and propose a
slightly more natural and efficient variant that finds itself in the same sit-
uation of needing direct proof. We also surface corresponding IBS schemes
through our modified Fiat-Shamir transform.

A schematic overview summarizing our security results for different schemes is
given in Figure 3.2 on page 29.
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1.2.2 Transitive Signature Schemes

The concept. A standard signature scheme allows a signer with public key
spk to authenticate a message by creating a signature σ with the corresponding
secret key ssk . The verifier can then later check the validity of the signature us-
ing the public key. For security, one would expect signatures to be unforgeable,
meaning that for an adversary who doesn’t know the secret key it is infeasi-
ble to create a valid signature himself. The most common security notion for
SS schemes is existential unforgeability under chosen-message attack (uf-cma)
[GMR88], which says that even after seeing signatures for any (reasonable) num-
ber of messages of his choice, the adversary cannot forge a signature for a new
message that was not signed before.

The concept of transitive signature (TS) schemes as introduced by Micali and
Rivest [MR02b] is closely related, but instead of signing arbitrary messages, the
signer authenticates edges in a dynamically growing graph. (This work concen-
trates on undirected graphs; the directed case is still an open problem that may
be very hard to solve [Hoh03].) With his secret key tsk , the signer can at any
time issue a signature for an edge {i, j}, and thereby acknowledge the existence
of the edge {i, j} in the graph. Signatures are verified using the corresponding
public key tpk , but the transitivity additionally requires that any user (so not
only the signer) knowing the public key tpk , and having signatures σ1, σ2 for two
adjacent edges {i, j} and {j, k}, is able to compute a third signature σ3 connect-
ing nodes i and k directly. Through this property, the graph being authenticated
does not only contain the edges explicitly signed by the signer, but is the entire
transitive closure of this graph. Requiring signatures to be unforgeable in the
same way as for SS schemes is unrealistic, since the composition algorithm ex-
plicitly allows forgeries to a limited extent. The new security definition [MR02b]
however requires that these are the only signatures that can be created by an
adversary, and that it is impossible to create a signature for an edge that is not
in the transitive closure of previously seen signatures.

A TS scheme is trivially realized by letting the verification algorithm of an
SS scheme accept a chain of signatures describing a path between two nodes as
a valid signature for an edge connecting them directly. Apart from having the
disadvantage of an increased signature size, this solution may also be undesirable
because of the loss of privacy: a signature reveals its creation history, instead of
only certifying the existence of an edge.

Micali and Rivest [MR02b] mention military chains-of-command as a prac-
tical application for the directed case, where an edge from person i to person j
means that i is a superior of j, and mention proofs of equality of administra-
tive domains (an undirected edge between i and j meaning that they are in the
same administrative domain) as an application for the undirected case. A truly
compelling application, however, is yet to be found.
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Our contributions. Apart from introducing the concept of transitive signa-
tures, Micali and Rivest [MR02b] also presented a first non-trivial and provably
secure construction realizing it based on discrete logarithms, that we will refer
to as the DL-TS scheme here. Briefly, we present several new schemes based on
various alternative assumptions, and we introduce a hash-based technique that
significantly reduces the size of a signature. Finally, we also solve a subtle issue
with the correctness definition for TS schemes of Micali and Rivest [MR02b].
More specifically, our contributions are the following. (We refer to Section 2.3
for an explanation of the mathematical assumptions used.)

• Our starting point is an open question raised by Micali and Rivest con-
cerning the security of an RSA-based TS scheme, that we will refer to
as RSA-TS here. They noted that the scheme was only secure against
non-adaptive adversaries (i.e. adversaries that have to commit to their
signature queries before seeing any signatures). While it is still an open
question whether the scheme is secure under adaptive attack assuming the
one-wayness of the RSA function, we provide a proof under the stronger
one-more RSA assumption.

• We then proceed to answer the natural question if there exists a TS scheme
that is secure under adaptive attack assuming only the one-wayness of
RSA, by presenting the Fact -TS scheme that is provably secure under the
even weaker factoring assumption.

• We present the DL1m-TS scheme, which is a more natural variant of the
DL-TS scheme that we prove secure under the one-more discrete loga-
rithm assumption. We also present the Gap-TS scheme based on gap Diffie-
Hellman groups.

• Subsequently, we introduce a technique using hash functions to eliminate
the need for so-called node certificates in the RSA-TS , Fact -TS and Gap-TS
schemes, significantly reducing signature sizes for these schemes. The se-
curity of the resulting RSAH -TS , FactH -TS and GapH -TS relies on the
random oracle model, however. We also present a general construction
that encompasses all three of these schemes in a single proof.

• Finally, we also address a subtlety that causes the correctness and security
definitions of TS schemes to be entangled with each other, and provide a
new correctness definition that doesn’t have this problem.

We refer to Section 4.1 for a more detailed summary of our results, and in
particular to Figures 4.1 and 4.2 for a schematic overview of the cost and security
properties associated to all schemes.
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1.3 Overview

The remainder of this thesis is structured as follows. In Chapter 2, we first
introduce the notation that will be used throughout this text. We further explain
the concept of practice-oriented provable security [Bel98], and provide more
details on the discussion surrounding the random oracle model. Then we will
briefly describe the number-theoretic problems on which the schemes treated in
this work are based.

Chapter 3 contains our results related to security proofs for identity-based
identification and signature schemes. Its first section contains a more technical
summary of our results than presented here in the introduction, and is highly
recommended to the technically interested but time-restricted reader (aren’t we
all. . . ). The following section formalizes security notions for SI, IBI, SS and IBS
schemes. The natural certificate-based IBI scheme is described in Section 3.3.
After introducing cSI schemes and proving our transforms in Section 3.4, we
proceed with the discussion of the schemes that fit our framework in Section 3.5.
In Section 3.6, we present the only two IBI schemes that do not originate from
a cSI scheme, and we prove their security as an IBI scheme directly.

Our results for transitive signature schemes are presented in Chapter 4. The
first section again contains a technical summary of the contributions. Formal
definitions for transitive signatures and their security are given in Section 4.2.
The starting point of our work, the security proof of the RSA-TS scheme, is
presented in Section 4.4, Section 4.5 revisits to some definitional issues, and
Section 4.6 describes new schemes employing the node certification paradigm.
We explain how to avoid this paradigm in Section 4.7.

Chapter 5 concludes the thesis with a brief summary of our contributions,
and points out a few interesting open problems.



Chapter 2

Preliminaries

2.1 Notation

Let {0, 1} be the set of individual bits and let {0, 1}∗ be the set of all bit strings.
We let N = {0, 1, 2, . . .} denote the set of natural numbers. If k ∈ N, then 1k

is the bit string of k ones and {0, 1}k is the set of bit strings of length k. The
empty string is denoted ε. If x, y are strings, then |x| is the length of x and x‖y
is the concatenation of x and y. If S is a set, then |S| is its cardinality. By the

notation x
R← S, we mean that an element x is selected uniformly at random

from S. A function f : N → [0, 1] is said to be negligible if it approaches zero
faster than the inverse of any polynomial, i.e. for every exponent c ∈ N there
exists an integer kc ∈ N such that f(k) ≤ k−c for all k > kc. The function f is
said to be overwhelming if its distance to unity approaches zero faster than the
inverse of any polynomial, i.e. for every exponent c ∈ N there exists an integer
kc ∈ N such that f(k) ≥ 1− k−c for all k > kc.

If A is a deterministic algorithm (Turing machine) with access to oracles
Or1, . . . ,Orm, then the notation y ← A(x1, . . . , xn : Or1, . . . ,Orm) denotes
that y is assigned the outcome of running A on inputs x1, . . . , xn. A randomized
or probabilistic algorithm A expects a random bit string of length ρA as an extra

input, called the random tape of A. We use y
R← A(x1, . . . , xn : Or1, . . . ,Orm)

as a shorthand notation for running A on inputs x1, . . . , xn, R where R is a fresh

random tape R
R← {0, 1}ρA and assigning the outcome to y. We write the set

of all possible outputs y of this experiment as [A(x1, . . . , xn : Or1, . . . ,Orm)].
All algorithms in this thesis are assumed to be probabilistic, unless otherwise
noted.

The running time of an algorithm A is denoted by TA, and the number of
times A queried the Ori oracle by QOri

A
. We define Q

A
=

∑
i Q

Ori

A
. For ran-

domized algorithms, we use the expected values of these quantities. Algorithm

11
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A is said to be polynomial-time if its running time is bounded by a polyno-
mial in its input length, meaning that there exists a polynomial p(k) such that
TA < p(

∑
i |xi|). We assume that an oracle query consumes one time unit, so

that the number of oracle queries of a polynomial-time algorithm is also bounded
by a polynomial in the input length. Note that the running time of a random-
ized algorithm may be non-deterministic, but it has to be upper bounded by a
polynomial in order to be a probabilistic polynomial-time algorithm.

An interactive algorithm (modelling a party such as prover or verifier in a
protocol) is a stateful algorithm that on input an incoming message Min (this
is ε if the party is initiating the protocol) and state information St outputs an
outgoing message Mout and updated state St ′. For an interactive algorithm A

with access to oracles Or1, . . . ,Orm, this is written as (Mout,St ′)
R← A(Min,St :

Or1, . . . ,Orm). An interactive algorithm may optionally take a random tape
of length ρA as a third input. This random tape remains the same throughout
subsequent invocations, A is supposed to include a pointer to the first unused
bit of the random tape in its state information. We use the same shorthand
notation as for non-interactive algorithms, omitting the random tape whenever
not strictly needed.

2.2 Practice-Oriented Provable Security

Security notions. Before anything useful can be said about the security of a
scheme, it must be made perfectly clear what is understood under its security.
This is captured by the security notion associated to the primitive, which is
usually described in terms of a game or experiment. The adversary, modelled
as a probabilistic algorithm, is given certain inputs and has access to certain
oracles, and is challenged to create an output that is considered “offending” to
the scheme.

Deciding on a suitable security notion that is strong enough to be meaningful
for practical purposes, yet weak enough to be achievable by real-world schemes,
is an important and time-consuming task that should not be underestimated.
Security notions may take a long time to crystallize, and in fact it is not uncom-
mon for multiple notions to exist (and have good reason for their existence) in
parallel. Public-key encryption for example has an extended history of suggested
adversarial goals and attack models, ranging from indistinguishability of cipher-
texts under chosen-plaintext attack [GM84], non-adaptive chosen-ciphertext at-
tack [NY90] and adaptive chosen-ciphertext attack; over non-malleability of
ciphertexts [DDN91] under the same sorts of attack [DDN91, DDN95, DDN00];
to the very high-level concept of plaintext awareness [BR98]. After the publi-
cation of relations among these notions [BDPR98], the community seemed to
settle with indistinguishability under adaptive chosen-ciphertext attack as the
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“holy grail” for public-key encryption, although Canetti et al. [CKN03] recently
suggested to slightly loosen the definition again.

But even if debate exists which notion is best-suited to capture the security
of a particular scheme, a security proof under any notion at least forces cryptog-
raphers to prove that the proposed scheme meets a certain clearly defined goal.
A scheme proven secure under a weaker notion but offering other advantages
(e.g. efficiency, patent issues, . . . ) may still find applications in settings where
the stronger security notion is not needed.

Polynomial security. Only few practical cryptographic schemes are uncon-
ditionally (or information-theoretically) secure in the sense that they resist any
type of adversary, regardless of its computational power, memory space and
other resources. More commonly, we will have to restrict the class of adver-
saries to polynomial-time probabilistic algorithms, and define security through
an asymptotical definition involving a security parameter k ∈ N, which is usually
a key length of some sort. Typically, we will let Expsec

S ,A(k) denote the outcome
(0 if the adversary looses, 1 if it wins) of a single run of the security experiment
associated to security notion sec confronting adversary A with scheme S using
security parameter k. The advantage of A is the probability that it wins the
game:

Advsec
S ,A(k) = Pr

[
Expsec

S ,A(k) = 1
]
,

where the probability is taken over the coins tossed by A and by the experiment.
Scheme S is finally said to be (polynomially) secure under notion sec if the
advantage of A is a negligible function in k for all polynomial-time adversaries
A.

Concrete security. A common critique on provable security often heard from
practitioners is that asymptotical bounds don’t provide the level of detail that
is desired in practice. Polynomial security guarantees that the scheme will be se-
cure for “sufficiently large” values of the security parameter, without suggesting
any concrete values for it. What practitioners want, however, are raw numbers
telling them exactly how long an encryption key should be to make sure that
an adversary with 280 time steps and 240 decryption queries to spend on an
attack has at most a chance of 2−20 to break the scheme. Such quantitative in-
formation is only vaguely represented in asymptotical security statements that
involve polynomials and negligible functions.

A more precise approach is practice-oriented provable security, which ob-
tains concrete bounds by investigating the details of the reduction algorithm
presented in the security proof. Indeed, the description of the algorithm reveals
how much easier or harder it is to break the scheme than to break one of the
underlying building blocks, and this information can be made explicit by stating
attributes such as running time, number of oracle queries and advantage of the
reduction algorithm as part of the security claim. As a consequence, security is
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no longer a binary property (secure or insecure), but a continuous one: between
two polynomially secure schemes, one can be more secure than the other. If for
example scheme S1 has advantage 2−k while scheme S2 has advantage 2−k/2,
then S2 needs twice the keylength of scheme S1 to achieve the same security
level. We say that S1 has a tighter security reduction than S2 and hence may be
preferable over S2.

The random oracle model. Some cryptographic primitives seem particularly
ill-suited for provable security, in the sense that none of the proposed provably
secure constructions is efficient enough to be used in practice, causing practition-
ers to turn to heuristic but more efficient alternatives instead. In the mid-1990s,
public-key encryption and signature schemes were notorious examples of such
primitives. Bellare and Rogaway [BR93a] suggested the random oracle model as
a compromise between theory and practice, sacrificing a piece of provable secu-
rity to buy efficiency. They subsequently used this paradigm to prove the secu-
rity of their OAEP (Optimal Asymmetric Encryption Padding) [BR98, Sho02]
and PSS (Probabilistic Signature Scheme) schemes [BR96]. These are just as
efficient as the heuristic schemes in use at the time, and gradually made their
way into industrial standards such as PKCS#1 and IEEE P1363. The random
oracle model has since been used in numerous security proofs throughout the
literature (see for example [BF01, BLS01, PS00, AABN02, Bol03a]).

The idea of the random oracle model is to prove security in an imaginary
model where all algorithms, including the adversary, have access to an oracle
H that implements a random function, meaning that images are independently
and uniformly distributed over the domain of the function. When implemented
in practice, the random oracle is replaced with a “good” cryptographic hash
function such as SHA-1 [Nat95] or RIPEMD-160 [DBP96]. The hash functions
are hoped to sufficiently mimic the unpredictable behavior of a random oracle
to preserve security in the real world.

A lot of controversy exists about the true value of security proofs in the
random oracle model, and indeed, they should be treated with care. Assuming
hash functions to behave like random oracles is not just a strong assumption,
it is plainly false: obviously, no efficiently computable function can ever be as-
sumed to be unpredictable. Moreover, critiques have been found separating the
random oracle model from the standard model. Canetti, Goldreich and Halevi
[CGH98] designed (contrived) encryption and signature schemes that are secure
in the random oracle model, but that are insecure when the random oracle is
instantiated with any function ensemble. Later, Nielsen [Nie02] showed that the
(quite natural) problem of non-interactive non-committing encryption has no
solution in the standard model, while it has a simple solution in the random or-
acle model. Lastly, Goldwasser and Tauman [GK03] demonstrated the existence
of a (contrived) identification scheme for which the Fiat-Shamir transform pro-
duces an insecure signature scheme when the random oracle is instantiated with
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any function ensemble. The Fiat-Shamir transform [FS86] (referred to as the
fs-I-2-S transform in Construction 3.3 of this thesis) converts a class of identifi-
cation schemes into signature schemes and was proven to be security-preserving
in the random oracle model [PS00, AABN02].

Hence, from a theoretical point of view, a proof in the random oracle model
is unmistakably inferior to a proof in the standard model. In practice, however,
attacks on schemes involving hash functions often assume the output of the
hash function to be random themselves. Proofs in the random oracle models do
guard against such attacks. Moreover, a scheme proven to achieve some clearly
specified security notion in the random oracle model is still strongly preferable
over completely ad-hoc protocol design. We advocate that the random oracle
model is to be judged on its merits: it provided “provable” security for schemes
that withstood years of attacks but lacked a proof in the standard model, and
it has proven to be a powerful tool for the design and analysis of new efficient
cryptographic protocols.

2.3 Mathematical Assumptions

The security of a scheme can be proved based on the security of its underlying
primitives, or can be reduced directly from a supposedly hard mathematical
problem. In this section, we describe the mathematical assumptions that will
be used throughout the rest of this work.

2.3.1 Factoring and RSA

The factoring problem. Despite being probably one of the most widely
studied problems in number theory, no polynomial-time algorithm is known to
compute the prime factors of general integers. Because efficient algorithms do
exist for integers with small prime factors, the composites used for cryptography
are mostly products of two large primes. We define a modulus generator Kfact as
a polynomial-time algorithm that, on input 1k, outputs a modulus N together
with primes p, q such that N = pq. The factoring problem associated to Kfact is
formally defined through the following experiment:

Experiment Expfact
Kfact,A

(k)

(N, p, q)
R← Kfact(1

k)

r
R← A(N)

If 1 < r < N and gcd(r,N) > 1 then return 1 else return 0.

The factoring advantage of algorithm A is

Advfact
Kfact,A

(k) = Pr
[
Expfact

Kfact,A
(k) = 1

]
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and the factoring problem associated to Kfact is said to be hard if this advantage
is a negligible function of k for all algorithms A with running time polynomial
in k. The hardness of the factoring problem is mainly impacted by the length
of the prime factors p, q (and hence of N). The fastest factoring algorithm for
equal-length factors |p| = |q| known to date is the Number Field Sieve and has

running time O(e1.923|N |1/3 ln(|N |)2/3

) [LL93]. The modulus typically should be
about 1024 bits long to be secure against adversaries spending 280 time steps.
Such a modulus was recently estimated to be factorable within one year using
special hardware costing about 10 million US$ [ST03].

The set Z
∗
N = {1 ≤ x < N : gcd(x,N) = 1} forms a group with the

multiplication modulo N . Proofs reducing the security of a scheme from the
factoring problem often exploit the fact that two square roots x1 and x2 of
the same element y ∈ Z

∗
N reveal the factorization of N if x1 6≡ ±x2 mod N .

Indeed, x2
1 ≡ x2

2 mod N implies that (x1 − x2)(x1 + x2) = 0 mod N and hence
that (x1 − x2)(x1 + x2) is an integer multiple of N , while neither (x1 − x2) nor
(x1 + x2) are multiples of N because of the condition that x1 6≡ ±x2 mod N . A
factor of N can then be computed as gcd(x1 − x2, N).

If p is an odd prime and a is an integer, then the Legendre symbol of a with
respect to p is defined as

(
a

p

)
=





0 if a ≡ 0 mod p
+1 if a is a square modp
−1 if a is a non-square modp

and can be efficiently computed as

(
a

p

)
≡ a p−1

2 mod p .

For a composite modulus N = p1 · . . . · pk with p1, . . . , pk prime, the Jacobi
symbol of a with respect to N is defined as

( a

N

)
=

k∏

i=1

(
a

pi

)
.

From the above definition, it might seem that the Jacobi symbol can only be
efficiently computed if the factorization of N is known. Using special properties
of the Jacobi symbol however, it can also be computed when the factorization
of the modulus is not known (see e.g. [MvOV96]).

A Blum integer is an integer N = pq where p, q are primes such that p ≡ q ≡
3 mod 4. Blum integers have the special property that −1 is a non-square with
Jacobi symbol +1 modulo N . A Blum modulus generator Kblum is a modulus
generator that only generates Blum integers N .
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The RSA problem. The RSA problem, named after its inventors Rivest,
Shamir and Adleman [RSA78], is related to the factoring problem but is not
known to be equivalent with it. An RSA key generator Krsa is a randomized
polynomial-time algorithm that on input 1k returns a modulus N , an encryp-
tion exponent e and a decryption exponent d such that N is the product of two
large primes and ed ≡ 1 mod ϕ(N), where ϕ(N) = (p−1)(q−1) is the Euler to-
tient function. Since ϕ(N) is also the order of the group Z

∗
N , the latter property

ensures that (xe)
d ≡ x mod N for all x ∈ Z

∗
N . The RSA problem associated to

Krsa is defined through the following experiment:

Experiment Exprsa
Krsa,A(k)

(N, e, d)
R← Krsa(1

k)

y
R← Z

∗
N

x
R← A(N, e, y)

If xe ≡ y mod N then return 1 else return 0.

The advantage of algorithm A in inverting RSA is

Advrsa
Krsa,A(k) = Pr

[
Exprsa

Krsa,A(k) = 1
]
,

and the RSA one-wayness assumption associated to Krsa says that the above is
a negligible quantity in k for all polynomial-time algorithms A.

Given the factorization of N , it is easy to compute the group order ϕ(N)
and hence to solve the RSA problem by computing d as the inverse of e modulo
ϕ(N). Conversely, it is also known that given an encryption exponent e and the
corresponding decryption exponent d, computing the factorization ofN becomes
easy [Bon99]. It is not known however whether there exists a way to solve the
RSA inversion problem without requiring to factor the modulus. This implies
that the RSA assumption is at least as strong as the factoring assumption. (The
commonly used terminology for assumptions can be confusing, in that a weak
assumption is preferable over a strong one. It would be clearer to speak about
light and heavy assumptions instead, but viewing its widespread adoption we
continue to use the conventional terminology in this work.)

Note that we don’t make any assumptions on the distribution of moduli and
exponents generated by Krsa, but only assume that their associated RSA prob-
lem is hard. In particular, some schemes may use small encryption exponents
(e.g. e = 3) for efficient encryption, others may need e to be prime for security
reasons. These are all captured under our definition of RSA key generators.

The one-more RSA problem. As early as in 1982, Chaum proposed a blind
signature scheme [Cha83] exploiting the multiplicative homomorphism of the
RSA function. For almost two decades, the security of this scheme remained
unclear: while no proof for it was known, neither did anyone propose a successful
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attack. Bellare et al. suggested that the reason behind this situation might
be that the security relies on properties of the RSA function that go beyond
mere one-wayness. For this purpose, they defined the stronger one-more RSA
assumption and proved Chaum’s blind signature scheme secure under it. The
same assumption was used later to prove the GQ identification scheme secure
under active and concurrent attack [BP02].

The one-more RSA problem gives the adversary access to two oracles: a
challenge oracle Chall that on each invocation returns a new target point
chosen uniformly at random from Z

∗
N , and an inversion oracle Inv(·) that on

input y ∈ Z
∗
N returns x ∈ Z

∗
N such that xe ≡ y mod N . The adversary’s task is

to invert all target points generated by the challenge oracle using strictly less
inversion queries than the total number of target points inverted. The game is
described more formally be the following experiment:

Experiment Exp1m-rsa
Krsa,A (k)

(N, e, d)
R← Krsa(1

k)
(x1, . . . , xn)← A(N, e : Inv,Chall) where n is the number of

queries made to Chall

Let m be the number of queries made to Inv

Let y1, . . . , yn be the challenges returned by Chall

If m < n and ∀ i ∈ {1, . . . , n} : xe
i ≡ yi mod N

then return 1 else return 0.

The advantage of algorithm A is defined as

Adv1m-rsa
Krsa,A (k) = Pr[Exp1m-rsa

Krsa,A (k) = 1].

The one-more RSA assumption says that this is a negligible function for all
adversaries A with running time polynomial in k.

Viewing the novelty of the assumption, it should be used with caution, since
it did not receive as much scrutiny from experts in the field yet as the stan-
dard RSA problem. Also note that the one-more RSA assumption only holds if
factoring does not reduce to the RSA problem: if the ability to compute RSA
inversions enables one to factor the modulus, then the one-more RSA problem
is easily solvable.

2.3.2 Discrete Logarithms

A discrete logarithm group generator Kdlog is a randomized algorithm that on
input 1k generates a triplet (G, q, g), where G is the compact description of a
multiplicative cyclic group of order q, and g is a generator of G. We will use the
notation G interchangeably for the group itself and its compact description. We
assume that the group operation · and the operator ≡ testing element equality
are efficiently computable from the description of the group.
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The discrete logarithm of y ∈ G with respect to g is x = logg(y) ∈ Zq

such that y ≡ gx. The discrete logarithm problem is to compute the discrete
logarithm of uniformly distributed elements of G with respect to g:

Experiment Expdlog
Kdlog,A(k)

(G, q, g)
R← Kdlog(1

k)

x
R← Zq ; y ← gx

x′
R← A(G, q, g, y)

If gx′ ≡ y then return 1 else return 0.

and the advantage of A is its probability of winning this game:

Advdlog
Kdlog,A(k) = Pr

[
Expdlog

Kdlog,A(k) = 1
]
.

The discrete logarithm problem associated to Kdlog is hard if Advdlog
Kdlog,A(k) is

a negligible function in k for all polynomial-time algorithms A.
Different types of discrete logarithm groups are in use today. The best-known

example is the multiplicative group Z
∗
p of order q = p−1 with p prime. The size of

p determines the hardness of the discrete logarithm problem; the fastest known
algorithm is the index calculus [Adl79] and has complexity O(ec

√
ln q·ln ln q).

Roughly speaking, p should have the same length as an RSA modulus to obtain
the same level of security, say 1024 bits. An idea of Schnorr [Sch90] was to use a
smaller subgroup of Z

∗
p of prime order q |p−1. The size of q can then be reduced

to about 160 bits without affecting the hardness of the problem. Note that the
representation of a group element still occupies |p| ≈ 1024 bits. Elliptic curve
groups over finite fields are a third type of groups where discrete logarithms
are assumed to be hard. While having the disadvantage of being introduced
to cryptography more recently [Mil86, Kob87] and hence possibly being more
vulnerable to mathematical breakthroughs, they have the major advantage that
the representation of an element is only slightly longer than the prime order
q, or about 170 bits long to achieve comparable security to a 1024-bit RSA
modulus. No subexponential discrete logarithm algorithm is known in elliptic
curve groups; the fastest is the Pollard-rho method [Pol78] which has complex-
ity O(

√
q). Comparing key sizes between different cryptographic problems is a

difficult task, and depends heavily on the assumptions made about algorithmic
advances in the near future. We refer to Lenstra and Verheul [LV01] for an
extensive overview.

Analogously to the one-more RSA problem, Bellare et al. [BNPS03] also
defined the one-more discrete logarithm problem in which an adversary is given
access to a challenge oracle Chall generating a new random target point every
time it is called, and a discrete logarithm oracle DLog that on input y ∈ G

returns x ∈ Zq such that gx ≡ y. The fact that no efficient algorithm is known to
implement such oracle does not pose a problem, since oracles are not restricted
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to polynomial time. The adversary’s task is to compute the discrete logarithm
of all target points using strictly less DLog queries.

Experiment Exp1m-dlog
Kdlog,A,(k):

(G, q, g)
R← Kdlog(1

k)
(x1, . . . , xn)← A(G, q, g : DLog,Chall) where n is the number of

queries made to Chall

Let m be the number of queries made to DLog

Let y1, . . . , yn be the challenges returned by Chall

If m < n and ∀ i ∈ {1, . . . , n} : gxi ≡ yi

then return 1 else return 0.

The advantage of A is defined as

Adv1m-dlog
Kdlog,A (k) = Pr

[
Exp1m-dlog

Kdlog,A (k) = 1
]
.

The one-more discrete logarithm assumption says that the above advantage is a
negligible function for all polynomial-time adversaries A. This assumption was
used to prove the security of the Schnorr identification scheme [Sch90] under
active and concurrent attack [BP02].

The Diffie-Hellman problems. A problem related to the discrete logarithm
problem is the computational Diffie-Hellman (CDH) problem, which is at the
basis of the Diffie-Hellman key exchange protocol [DH76] and asks to compute
gab given ga and gb:

Experiment Expcdh
Kdlog,A(k)

(G, q, g)
R← Kdlog(1

k)

a
R← Zq ; b

R← Zq ; u← ga ; v ← gb

w
R← A(G, q, g, u, v)

If w ≡ gab then return 1 else return 0.

The advantage of A, as usual, is defined as the probability of A winning the
above game.

The decisional Diffie-Hellman (DDH) problem is to differentiate between
Diffie-Hellman tuples and random tuples. Because any adversary can obtain a
success probability of 1/2 by random guessing, we parameterize the experiment
with a bit d:

Experiment Expddh-d
Kdlog,A(k)

(G, q, g)
R← Kdlog(1

k)

a
R← Zq ; b

R← Zq ; u← ga ; v ← gb

If d = 0 then w ← gab else w
R← G

d′
R← A(G, q, g, u, v, w)

If d′ = d then return 1 else return 0.
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and define the advantage function as A’s ability to distinguish between the
experiments for d = 0 and d = 1:

Advddh
Kdlog,A(k) =

∣∣∣Pr
[
Expddh-0

Kdlog,A(k) = 1
]
− Pr

[
Expddh-1

Kdlog,A(k) = 1
]∣∣∣ .

The hardness of the CDH and DDH problems says that the respective advantage
functions are negligible in k for any polynomial-time algorithm A. It is clear that
if the CDH problem is easy then so is the DDH problem, and that if computing
discrete logarithms is easy then both Diffie-Hellman problems are easy as well.
The converses however are not known to hold. Moreover, Joux and Nguyen
[JN03] provided evidence for a possible separation (or gap) between the CDH
and DDH problems by showing a group in which the DDH problem is easy, while
the CDH is still assumed to be hard. We call such groups Gap Diffie-Hellman
(Gap-DH) groups, and define a Gap Diffie-Hellman group specifier as a pair
of algorithms (Kgap,Sddh), where Kgap is a discrete logarithm group generator,

and Sddh is a DDH algorithm that on input Ĝ, q, g, ga, gb, gc decides whether
c ≡ ab mod q or not for all (Ĝ, q, g) ∈ [Kgap(1k)] and for all k ∈ N. The Gap-DH

assumption associated to Kgap says that the CDH problem in Ĝ is hard, even
though the DDH problem is easy. The Gap-DH assumption was originally used
by Boneh, Lynn and Shacham [BLS01] to construct a signature scheme with
very short signatures, and later by Boldyreva [Bol03a] to construct threshold
and multi-signatures.

Similarly to the RSA and the discrete logarithm problem, the CDH problem
can be generalized to a one-more variant called the one-more CDH problem
[Bol03a]. The adversary gets u ≡ ga as input and has access to a challenge
oracle Chall generating random target points vi ≡ gbi and a CDH oracle Cdh

that on input v ∈ G returns w ≡ va. In order to win the game, the adversary
has to output wi ≡ gabi for all target points using strictly less exponentiation
queries.

Experiment Exp1m-cdh
Kdlog,A(k)

(G, q, g)
R← Kdlog(1

k)

a
R← Zq ; u← ga

(w1, . . . , wn)← A(G, q, g, u : Cdh,Chall) where n is the number of
queries made to Chall

Let m be the number of queries made to Cdh

Let v1 ≡ gb1 , . . . , vn ≡ gbn be the challenges returned by Chall

If m < n and ∀ i ∈ {1, . . . , n} : wi ≡ gabi

then return 1 else return 0.

The one-more CDH assumption says that no polynomial-time algorithm A has
a non-negligible chance of winning the game, and the one-more Gap-DH as-
sumption says that this is still the case when A is additionally given access to
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a DDH algorithm. This assumption was previously used by Boldyreva [Bol03a]
to prove the security of a blind signature scheme based on Gap-DH groups.

Pairing functions. The only Gap-DH groups known today are supersingular
elliptic curves on which the DDH problem can be solved using the modified Weil
or Tate pairing function. The mathematical details of these groups are beyond
the scope of this thesis (we refer the interested reader to [JN03]), but some of the
schemes treated here need slightly more detail than provided by the black-box
definition of Gap-DH groups.

A pairing generator is a polynomial-time randomized algorithm Kpair that
on input 1k outputs a tuple (G1,G2, q, P, ê), where G1 and G2 are the compact
descriptions of an additive and multiplicative group, respectively, both of the
same prime order q. The point P is a generator of G1, and ê : G1 ×G1 → G2 is
the pairing function with the following properties:

• Non-degenerate: ê does not map all pairs of elements in G1 to the neutral
element of G2;

• Computable: the pairing ê(P,Q) is computable in polynomial time for all
P,Q ∈ G1;

• Bilinear: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1 and for all a, b ∈ Zq.

We will use additive notation for G1 as is conventional for elliptic curve groups.
This might be a bit confusing though: the “discrete logarithm” of Q ∈ G1 with
respect to P is x such that Q ≡ xP , the CDH problem is to compute abP
given (G1,G2, q, P, aP, bP ), and the DDH problem is to, given (G1,G2, q, P, aP,
bP, cP ), decide whether c ≡ ab mod q. The group G1 is a Gap-DH group since
the DDH problem can be solved by checking that ê(P, cP ) ≡ ê(aP, bP ), while
the CDH problem in G1 is assumed to be hard. The CDH assumption in G1

is a weaker assumption than the so-called bilinear CDH assumption used by
Boneh and Franklin [BF01] which states that, given (P, aP, bP, cP ), computing
ê(P, P )abc is hard.



Chapter 3

Identity-Based

Identification Schemes

3.1 Introduction and Main Contributions

Identity-based cryptography. In 1984, Shamir [Sha84] introduced identity-
based cryptography as a way to eliminate the public key distribution problem
and the associated user certificates. The idea is to design cryptosystems such
that any bit string is a valid public key, thereby allowing a user’s public key
to be simply his identity or email address. A trusted key generation center is
set up to generate a domain-wide master public key mpk and a corresponding
master secret key msk . The key generation center uses the master secret key to
compute the user secret key usk corresponding to a user’s identity. The center
is assumed to issue user secret keys over a secure or out-of-band channel.

While this approach indeed eliminates the need for exchanging or looking
up certificates of correspondents, it also has its disadvantages. Key escrow, for
example, is inherent to identity-based cryptography as described above: the key
generation center knows the secret keys of all users in the system, and can
hence decrypt messages, forge signatures or impersonate users at will. Users
need have unconditional trust in the key generation center, which is undoubtedly
unacceptable for many applications. The level of trust can be lowered by using
self-certified public keys [Gir91], which are generated interactively so that the
key generation center does not know the corresponding secret key. This does not
prevent the center from creating a new secret key by simulating the interaction,
but the user can demonstrate such fraudulent behavior by proving that a secret
key different from his own was used.

Also, communication can be done in a fully identity-based manner within

23
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one domain, but classical PKI techniques will still be necessary to make the
master public key securely available to users outside the domain boundaries.
The number of online lookups will be greatly reduced though, since there will be
considerably less key generation centers than total users. Hierarchical identity-
based cryptography [HNZI99, GS02] allows for an entire identity-based PKI,
but at the cost of a linear growth of the communication complexity with the
depth of the hierarchy.

Another problem of identity-based cryptography is key revocation. If a user’s
key is compromised, he “loses” his identity, because the secret corresponding to
it has leaked. A partial solution is to append the current year (or date) to
the user’s identity [BF01], and use that as a public key. The user then has to
retrieve a new secret key from the key generation center every year (day), but
the damage of loss of keys remains limited to a single time frame.

The goal of this work is to provide clear security guarantees for identity-
based identification and signature schemes. We do not advocate identity-based
cryptography as a replacement for traditional PKIs, but rather as an alter-
native technology with its own advantages and disadvantages. Identity-based
cryptography may find practical applications when the efficiency improvements
are thought to compensate for the above disadvantages, which may be the case
in low-security settings (e.g. user-friendly email encryption to Hotmail accounts)
or situations where a trusted superior is readily available (e.g. identification of
smart cards issued by a single company).

Current state of the area. The late eighties and early nineties saw the
proposal of many identity-based identification (IBI) and identity-based sig-
nature (IBS) schemes. These include the Fiat-Shamir IBI and IBS schemes
[FS86], the Guillou-Quisquater IBI and IBS schemes [GQ89], the IBS scheme
in Shamir’s paper [Sha84] introducing identity-based cryptography, and oth-
ers [Oka93, Gir90, Bet88]. Recently, new pairing-based IBS schemes have been
proposed [SOK00, Hes03, Pat02, CC03, Yi03].

Prompted by the renewed interest in identity-based cryptography that has
followed the proposal of a practical identity-based encryption (IBE) scheme
[BF01], we decided to revisit the IBI and IBS areas. An examination of past
work revealed the following.

Although there is a lot of work on proving security in the identification do-
main, it pertains to standard rather than identity-based schemes. (For example,
security proofs have been provided for standard identification schemes related
to the Fiat-Shamir and Guillou-Quisquater IBI schemes [FFS88, BP02], but
not for the IBI schemes themselves.) In fact, a provable-security treatment of
IBI schemes is entirely lacking: there are no security definitions, and none of
the existing schemes is proven secure. Given the large number of proposed IBI
schemes, this is an important (and quite surprising) gap.

The situation for IBS is somewhat better. Cha and Cheon provide a definition
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of security for IBS schemes and prove their scheme secure [CC03]. Dodis, Katz,
Xu, and Yung [DKXY03] define a class of standard signature (SS) schemes that
they call trapdoor, and then present a random-oracle-using transformation (let
us call it tSS-2-IBS) that turns any secure trapdoor SS (tSS) scheme into a
secure IBS scheme. Security proofs for several existing IBS schemes, including
those of [FS86, GQ89], are obtained by observing that these are the result
of applying tSS-2-IBS to underlying tSS schemes already proven secure in the
literature [PS00, OO98, AABN02]. However, as we will see, there are several IBS
schemes not yet proven secure (one example is Shamir’s IBS scheme [Sha84]),
either because they are not the result of applying tSS-2-IBS to a tSS scheme,
or because, although they are, the tSS scheme in question has not yet been
analyzed.

Security notions. The first step, naturally, is defining security notions. We
extend to the IBI setting the three notions of security for standard identifica-
tion (SI) schemes, namely security against impersonation under passive attacks
(imp-pa), active attacks (imp-aa) [FFS88], and concurrent attacks (imp-ca)
[BP02]. Our model allows the adversary to expose user (prover) keys, and to
mount either passive, active, or concurrent attacks on the provers, winning if
it succeeds in impersonating a prover of its choice. We remark that although
existing security definitions for other identity-based primitives [BF01, CC03,
DKXY03] give us some guidance as to which adversary capabilities to consider,
there are some issues in the definition for IBI that need thought, mainly related
to which capabilities the adversary gets in which stage of its two-stage attack.
See Section 3.2.

Certificate-based schemes. Before executing the main task of analyzing
practical IBI and IBS schemes, we pause to consider the following natural design
of an IBI scheme, based on any given SI scheme, via the certification technique.
The authority picks a public and secret key pair (pk , sk) for the SI scheme,
and provides these to prover I along with a certificate cert consisting of the
authority’s signature on I, pk . The prover can now flow pk , cert to the verifier
and then identify itself via the SI scheme under pk . The verifier needs to know
only I and the public key of the authority in order to authenticate the prover.

Theorem 3.2 says that the above yields a secure IBI scheme. An analogous
result holds in the IBS case. We believe that this is worth noting because it
highlights the fact that, unlike IBE [BF01], IBI and IBS are trivial to achieve
(and in particular do not require random oracles), and enables us to better
understand what the practical schemes are trying to achieve, namely to beat
the trivial certification-based schemes in performance.

Main contributions and approach. This paper delivers security proofs for
a large number of practical IBI and IBS schemes, including not only the ones
mentioned above, but many more that we surface as having been, with hindsight,
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Name-SI

Name-SS

Name-IBI

Name-IBS

-
cSI-2-IBI

-
cSS-2-IBS?

fs-I-2-S

?

fs-I-2-S

Figure 3.1: Family of schemes associated to a cSI scheme Name-SI . If Name-SI is
imp-atk secure then Name-IBI is also imp-atk secure, for all atk ∈ {pa, aa, ca}. If
Name-SI is imp-pa secure then Name-IBS is uf-cma secure. Implicit in drawing the
diagram this way is that fs-I-2-S(cSI-2-IBI(Name-SI )) = cSS-2-IBS(fs-I-2-S(Name-SI )).

implicit in the literature.
We do this in two steps. In the first step, we provide a framework that (in

most cases) reduces proving security of IBI or IBS schemes to proving security
of an underlying SI scheme. In a few cases, we found that the SI schemes in
question were already analyzed in the literature, but in many cases they were
not. The second step, where lies the main technical contribution of this chapter,
is to provide security proofs for those SI schemes not already proven secure, and
then provide direct security proofs for the few exceptional IBI or IBS schemes
that do not fall under our framework.

The framework, we believe, is of value beyond its ability to reduce proving
security of IBI and IBS schemes to proving security of SI schemes. It helps
understand how schemes are being derived, and in the process surfaces the
implicit schemes we mentioned above. Overall, the framework contributes to
simplifying and unifying our picture of the area. We now explain the framework,
which is based on a set of transforms, and then summarize the results for specific
schemes.

The transforms. We introduce a class of SI schemes that we call convertible.
The idea is that their key-generation process is based on a primitive called a
trapdoor samplable relation that we introduce in Definition 3.5. We then present
a transformation cSI-2-IBI that transforms a convertible SI (cSI) scheme into an
IBI scheme, and show that it is security-preserving, meaning that if the starting
cSI scheme is secure against impersonation under passive, active or concurrent
attack, then so is the resulting IBI scheme (in the random oracle model). This
will be our main tool for proving security of IBI schemes.

We analogously define convertible standard signature (cSS) schemes and a
transform cSS-2-IBS that turns a secure cSS scheme into a secure IBS scheme.
These extend the tSS schemes [DKXY03] in the sense that any tSS scheme is
also a cSS scheme, and our cSS-2-IBS transform coincides with the tSS-2-IBS
transform when the starting scheme is a tSS scheme, but the class of cSS schemes
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is larger than the class of tSS schemes.

It is known that the (random-oracle-using) Fiat-Shamir transform [FS86],
to which we refer as the fs-I-2-S transform, turns SI schemes into SS schemes.
We know that if the former is secure under passive attack, then the latter is
unforgeable under chosen-message attack [AABN02]. (Application of the trans-
form and this last result requires that the starting SI scheme is a three-move
protocol satisfying a certain technical condition, but these conditions will always
be true for the applications we consider.)

Putting the above together yields Corollary 3.11, which says that, as long
as a cSI scheme SI is secure under passive attack, then the IBS scheme IBS =
cSS-2-IBS(fs-I-2-S(SI )) is unforgeable under chosen-message attack. This will be
our main tool for proving security of IBS schemes.

We note that fs-I-2-S also transforms a given IBI scheme into an IBS scheme.
Furthermore, the diagram of Figure 3.1 commutes, in the sense that cSS-2-IBS(
fs-I-2-S(SI )) = fs-I-2-S(cSI-2-IBI(SI )) for any cSI scheme SI .

As an aside, we demonstrate that the analogue of the result of Abdalla et
al. [AABN02] does not hold in general for fs-I-2-S as a transform of IBI schemes
to IBS schemes: Proposition 3.12 shows that there exists an imp-pa secure IBI
scheme that when transformed under fs-I-2-S yields an insecure IBS scheme. This
does not contradict the above since the scheme in question is not the result of
cSI-2-IBI applied to a cSI scheme, but it makes things a little more difficult in
a few exceptional cases (that we will discuss later) where we want to derive an
IBS scheme from an IBI scheme that is not the cSI-2-IBI transform of any cSI
scheme. For this purpose, we slightly modify the fs-I-2-S transform to obtain the
efs-IBI-2-IBS transform that turns any imp-pa secure IBI scheme into a uf-cma
secure IBS scheme.

Scheme families. We seek to explain all IBI schemes IBI in the literature by
surfacing a cSI scheme SI such that cSI-2-IBI(SI ) = IBI . We seek to explain
any IBS scheme IBS in the literature by surfacing a cSI scheme SI such that
cSS-2-IBS(fs-I-2-S(SI )) = IBS . We are able to do this for most of the schemes
we found in the literature [FS86, GQ89, Sha84, Gir90, Hes03, CC03, Yi03,
Bet88] including the RSA-based IBI scheme in [Oka93], which reduces the task
of showing that IBI , IBS are secure to showing that SI is secure in these cases.

We remark that the above gives rise to numerous schemes that are “new” in
the sense that they were not provided explicitly in the literature. For example,
Shamir [Sha84] defined an IBS scheme but no IBI scheme. (He even states that
providing an IBI scheme is an open question.) Denoting Shamir’s IBS scheme by
Sh-IBS , we surface the cSI scheme Sh-SI such that cSS-2-IBS(fs-I-2-S(Sh-SI )) =
fs-I-2-S(cSI-2-IBI(Sh-SI )) = Sh-IBS . Consequently, we surface the IBI scheme
Sh-IBI = cSI-2-IBI(Sh-SI ) that is related in a natural way to Sh-IBS , namely
by the fact that fs-I-2-S(Sh-IBI ) = Sh-IBS . In an analogous way we surface IBI
schemes Hs-IBI and ChCh-IBI underlying the Hs-IBS [Hes03] and ChCh-IBS
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[CC03, Yi03] schemes, respectively.

Beside explaining existing IBI or IBS schemes, we are able to derive some
new ones. We found papers in the literature [OO90, OS90, FF02] not defining
IBI or IBS schemes, but proposing SI schemes that we show to be convertible.
Our transforms then yield new IBI and IBS schemes that we analyze.

We feel that this systematic surfacing of implicit schemes helps to homog-
enize, unify, and simplify the area. Figure 3.1 summarizes the perspective that
emerges. We view schemes as occurring in families. Each family has a family
name Name. At the core of the family is a cSI scheme Name-SI . The other
schemes are related to it via Name-IBI = cSI-2-IBI(Name-SI ), Name-SS =
fs-I-2-S(Name-SI ), and Name-IBS = cSS-2-IBS(Name-SS). If Name-SI is secure,
then so are all other schemes in the family.

Results for specific schemes. In order to complete the task of obtaining
security proofs for the existing and new IBI and IBS schemes we have discussed,
it remains to analyze the cSI schemes underlying the families in question. This
turned out to be a large task, for although in a few cases the cSI scheme was
already analyzed in the literature, we found (perhaps surprisingly) that in many
cases it wasn’t. Additionally, we need to directly analyze two IBI schemes not
based on cSI schemes, namely the DL-based scheme by Okamoto [Oka93], and
a somewhat more efficient Schnorr-based [Sch90] variant that we introduce.

A summary of our results is given in Figure 3.2. Sections 3.5 and 3.6 provide
scheme descriptions, more precise result statements and security proofs. Note
that all proofs for SS, IBI, and IBS schemes are in the random oracle model.
We highlight some of the important elements of our results here.

Section 3.5 begins by surfacing SI schemes underlying the first 13 (i.e. all
but the last two) families of Figure 3.2 and shows that they are convertible, so
that the picture of Figure 3.1 holds in all these cases and we need only consider
security of the cSI schemes. The analysis of these schemes follows.

Easy cases are FS , ItR (the iterated-root family, also known as 2t-th root
in the literature), FF , GQ , and OkRSA (an RSA-based family by Okamoto
[Oka93]) where the SI schemes are already present and analyzed in previous
work [FFS88, Sch96, FF02, BP02, Oka93].

The Sh-SI scheme turns out to be a mirror-image of GQ -SI , and is interesting
technically because we show that it is honest-verifier zero-knowledge (HVZK)
even though it might not at first appear to be so. Based on this, we prove that
it is imp-pa secure, but simple attacks show that imp-aa and imp-ca security do
not hold. A slight modification Sh∗-SI of this scheme however is not only imp-pa
but also proven imp-aa and imp-ca secure under the one-more RSA assumption,
so that its security is similar to that of GQ -SI [BP02].

An attack and a fix for Girault’s IBI scheme [Gir90] were proposed [SSN98],
but we find attacks on the fixed scheme as well, breaking all schemes in the
family.
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Name Origin Name-SI Name-IBI Name-SS Name-IBS
imp-pa imp-aa imp-ca imp-pa imp-aa imp-ca uf-cma uf-cma

FS IBI,IBS [FS86, FFS88] [FS86] [FFS88] I I I I [PS00] [DKXY03]
ItR SI, SS [OO90, OS90] [Sch96] [Sch96] U I I U [PS00] [DKXY03]
FF SI,SS [FF02] [FF02] [FF02] [FF02] I I I [FF02] [DKXY03]

GQ IBI, IBS [GQ89] [GQ89] [BP02] [BP02] I I I [PS00] [DKXY03]
Sh IBS [Sha84] P A A I A A I I
Sh∗ SI P P P I I I I I
OkRSA SI, IBI, SS [Oka93] [Oka93] [Oka93] I I I I [PS00] [DKXY03]
Gir SI, IBI [Gir90, SSN98] A A A A A A A A

SOK IBS [SOK00] P A A I A A I I
Hs IBS [Hes03] P P P I I I [Hes03] [DKXY03]
ChCh IBS [CC03, Yi03] P P P I I I [CC03] [CC03]

Beth1 IBI [Bet88] P U U I U U I I
Beth t IBI [Bet88] U U U U U U U U
OkDL IBI [Oka93] I I I P P P I I
XDL SI, IBI I I I P P P I I

Figure 3.2: Summary of security results. Column 1 is the family name of a family of schemes. Column 2 indicates which of the
four member-schemes of the family existed in the literature. (The others we surface.) In the security columns, a known result
is indicated via a reference to the paper establishing it. The marks I, P, and A all indicate new results obtained in this work.
An I indicates a proof of security obtained by implication. (If under Name-IBI it means we obtain it via Theorem 3.8, if under
Name-IBS it means we obtain it either via Corollary 3.11 or via our modified fs-I-2-S transform, if elsewhere it means it follows
easily from, or is an easy extension of, existing work.) A P indicates a new security proof, such as a from-scratch analysis of
some SI or IBI scheme. An A indicates an attack that we have found. A U indicates that the security status is unknown. In all
but the last two rows, the SI scheme is convertible. The first set of schemes are factoring based, the next RSA based, the next
pairing based, and the last DL based.
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We prove imp-pa security of the pairing-based SOK -SI , Hs-SI and ChCh-SI
schemes under the CDH assumption, and imp-aa and imp-ca security under
the one-more CDH assumption. We remark that the SOK -IBS scheme defined
via our transforms is not that of Sakai et al. [SOK00], but is a slightly variant
of it. This suggests the value of our framework, for it is unclear whether the
IBS scheme of Sakai et al. can be proven uf-cma secure, whereas Corollary 3.11
implies that our variant SOK -IBS is uf-cma secure.

Since the discrete logarithm function has no known trapdoor it is not an
obvious starting point for IBI schemes, but some do exist. Beth’s (unproven)
IBI scheme Beth t -IBI [Bet88] is parameterized with a “key multiplicity” t ∈
{1, 2, . . .} and is based on ElGamal signatures. The proof of convertibility of
the Beth1 -SI scheme we surface is interesting in that it exploits the existential
forgeability of ElGamal signatures [El 84]. We prove that Beth1 -SI is imp-pa
secure if the hashed-message ElGamal signature scheme is universally unforge-
able under no-message attack in the random oracle model. We were unable to
either prove secure or break Beth1 -SI under active and concurrent attacks. We
were also unable to prove any security results at all about the Beth t family for
t > 1.

Exceptions. The last two rows of Figure 3.2 represent cases where our frame-
work does not apply and direct analyses are needed. The first such case is
an unproven discrete logarithm based IBI scheme OkDL-IBI due to Okamoto
[Oka93], which introduces an interesting SS-based method for constructing IBI
schemes and instantiates it with a discrete logarithm-based SS scheme pre-
sented in the same paper. We were unable to surface any cSI scheme that under
cSI-2-IBI maps to OkDL-IBI . (OkDL-IBI can be “dropped” in a natural way to
a SI scheme OkDL-SI , but the latter does not appear to be convertible.) How-
ever, we show that OkDL-IBI is nevertheless imp-pa, imp-aa and imp-ca secure
assuming the hardness of the discrete logarithm problem. This direct proof is
probably the most technical in this chapter and uses the security of Okamoto’s
well-known discrete logarithm based SS scheme under a weakened notion of non-
malleability [SPMLS02], which is established via an extension of the result of
Abdalla et al. [AABN02] combined with results from Okamoto [Oka93]. We also
present a new IBI scheme XDL-IBI that is based on the technique underlying
OkDL-IBI but uses Schnorr signatures [Sch90] instead of Okamoto signatures.
It is slightly more efficient than OkDL-IBI . Security results are analogous to
those above.

Since they do not originate from cSI schemes, the IBS schemes obtained
as fs-I-2-S(OkDL-IBI ) and fs-I-2-S(XDL-IBI ) cannot be proven secure based
merely on the security properties of the IBI schemes. However, we can apply our
modified efs-IBI-2-IBS transform to OkDL-IBI and XDL-IBI to obtain uf-cma
IBS schemes.
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3.2 Security Notions

3.2.1 Identification Schemes

Standard identification schemes. A standard identification (SI) scheme is
a tuple SI = (Kg,P,V) of algorithms where Kg is the randomized polynomial-
time key generation algorithm, and P and V are polynomial-time interactive
algorithms called the prover and verifier algorithms, respectively. In an initial-
ization step, the prover runs Kg(1k), where k is a security parameter, to obtain a
key pair (pk , sk), and publishes the public key pk while keeping the secret key sk
private. In the interactive identification protocol, the prover runs P with initial
state sk , and the verifier runs V with initial state pk . The first and last messages
of the protocol belong to the prover. The protocol ends when V enters either the
acc or rej state. We require that for all k ∈ N and for all (pk , sk) ∈ [Kg(1k)],
the result of the interaction between P (initialized with sk) and V (initialized
with pk) is acc with overwhelming probability. This correctness requirement is
necessary to exclude trivial schemes such as the scheme that always rejects.

Security of SI schemes. We first give an intuitive description of the game
defining security of SI schemes, and then proceed to a more formal description.
The security experiment runs in two stages. The first is the learning stage, in
which the adversary is either allowed to listen in on conversations between an
honest prover and an honest verifier (passive attack [FFS88]), or is allowed to
play the role of a cheating verifier in the interaction with honest provers (active
[FFS88] and concurrent [BP02] attack). In an active attack, the adversary can
only interact with a single prover at the same time, while a concurrent attack
allows the adversary to arbitrarily interleave the conversations with any number
of prover instances it chooses. When it decides it gathered enough information,
the adversary announces it is ready to enter the second stage of the game: the
impersonation stage. In this stage, the adversary is deprived from its previous
powers and is faced with an honest verifier instead. It now has to play the role of
a cheating prover and try to make the honest verifier accept using the knowledge
it acquired during the previous stage of the game. The adversary is said to win
the game if it succeeds in doing so.

Note that an identification scheme is not meant to protect against a “man-in-
the-middle” attack, where the adversary makes a verifier accept by forwarding
messages from an honest prover it is simultaneously interacting with. An identi-
fication scheme provides entity authentication, which merely guarantees that the
entity is “alive” at the moment of verification. No message is being authenticated
during the protocol as in signature schemes, and the participants do not share
a secret key at the end of the protocol as in authenticated key-establishment
protocols.

More formally, an SI adversary A is modelled as a pair of algorithms (CV,CP)
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called the cheating verifier and the cheating prover. The experiment first chooses
keys (pk , sk) via Kg(1k) and then runs CV on input pk . For a passive attack
(pa), CV has access to a conversation oracle Conv, a query to which returns
the transcript of a fresh conversation between P and V:

StP ← sk ; RP

R← {0, 1}ρP

StV ← (pk ,RV) ; RV

R← {0, 1}ρV

T ← ε ; Min ← ε
Repeat

(Mout,StP)← P(Min,StP,RP)
(Min,StV)← V(Mout,StV,RV)
T ← T‖Min‖Mout

Until StV ∈ {acc, rej}
Return T .

For an active attack (aa) or concurrent attack (ca), CV gets a prover oracle
Prov. Upon a query (M, s) where M is a message and s is a session number,
the Prov oracle runs the prover algorithm P using M as an incoming message
and returns the prover’s outgoing message while maintaining the prover’s state
associated with the session s across invocations. (For each new session, Prov

uses fresh random coins to start the prover, initializing it with sk .) The difference
between active and concurrent attacks is that the former allows only a single
prover to be active at the same time. Eventually, CV halts with some output that
is given as initial state to interactive algorithm CP, and A wins if the interaction
between CP and V (the latter initialized with pk) leads the latter to accept. For
atk ∈ {pa, aa, ca}, the imp-atk advantage of A in attacking SI is written as

Advimp-atk
SI ,A (k) and is defined to be the probability of A winning in the above

experiment. We say that SI is an atk-secure SI scheme if Advimp-atk
SI ,A (·) is a

negligible function for every A whose two component algorithms have running
time polynomial in k.

Identity-based identification schemes. An identity-based identification
(IBI) scheme is a four-tuple IBI = (MKg,UKg,P,V) of polynomial-time al-
gorithms. The trusted, key-issuing authority runs the master-key generation
algorithm MKg on input 1k, where k is a security parameter, to obtain a master
public and secret key pair (mpk ,msk). It can then run the user-key generation
algorithm UKg on inputs msk and the identity I ∈ {0, 1}∗ of a user to generate
for this user a secret user key usk which is then assumed to be securely commu-
nicated to the user. In the interactive identification protocol, the prover with
identity I runs the interactive algorithm P with initial state usk , and the veri-
fier runs V with initial state mpk , I. The first and last messages of the protocol
belong to the prover. The protocol ends when V enters either the acc or the rej
state. In the random oracle model, UKg,P,V additionally have oracle access to
a random function H whose range may depend on mpk . Correctness requires
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Oracle Init(I)
If I ∈ CU ∪HU then return ⊥
usk [I]

R← UKg(msk , I)
HU ← HU ∪ {I}
Return 1

Oracle Corr(I)
If I 6∈ HU then return ⊥
CU ← CU ∪ {I}
HU ← HU \ {I}
Return usk [I]

Oracle Conv(I)
If I 6∈ HU then return ⊥
Pick random coins ρ

P
for P

Pick random coins ρ
V

for V
St

P
← (usk [I], ρ

P
)

St
V
← (mpk , I, ρ

V
)

Min ← ε ; C ← ε
While (St

V
6∈ {acc, rej}) do

(Mout,St
P
)← P(Min,St

P
)

(Min,St
V
)← V(Mout,St

V
)

C ← C‖Mout‖Min

Return C

Oracle Prov(I, s,Min)
If I 6∈ HU then return ⊥
If (I, s) 6∈ PID then

If atk = aa then
PID ← {(I, s)}

If atk = ca then
PID ← PID ∪ {(I, s)}

Pick random coins ρ for P
St

P
[I, s]← (usk [I], ρ)

(Mout,St
P
[I, s])← P(Min,St

P
[I, s])

Return Mout

Experiment Expimp-atk
IBI ,A

(k) // atk ∈ {pa, aa, ca}

Parse A as (CV,CP) ; (mpk ,msk)
R← MKg(1k)

HU ← ∅ ; CU ← ∅ ; PID ← ∅ // set of honest users, set of corrupted

// users and set of running prover sessions

If atk = pa then (J,St
CP

)← CV(mpk : Init(·),Corr(·),Conv(·))
Else (J,St

CP
)← CV(mpk : Init(·),Corr(·),Prov(·, ·, ·))

If J 6∈ HU then return 0
HU ← HU \ {J} ; CU ← CU ∪ {J} ; St

V
← (mpk , J) ; Min ← ε

Repeat
If atk = pa then

(Mout,St
CP

)← CP(Min,St
CP

: Init(·),Corr(·),Conv(·))
Else

(Mout,St
CP

)← CP(Min,St
CP

: Init(·),Corr(·),Prov(·, ·, ·))
(Min,St

V
)← V(Mout,St

V
)

Until St
V
∈ {acc, rej}

If St
V

= acc then return 1 else return 0

Figure 3.3: Oracles given to adversary attacking IBI scheme IBI = (MKg,UKg,
P,V), and experiment used to define imp-atk security of the scheme.

that for all k ∈ N, I ∈ {0, 1}∗, (mpk ,msk) ∈ [MKg(1k)], for all functions H with
appropriate domain and range, and for all usk ∈ [UKg(msk , I : H)], the result of
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the interaction between P (initialized with usk) and V (initialized with mpk , I)
is that V accepts with probability one.

Security of IBI schemes. We first provide the formal definitions and then
the explanations. Let k ∈ N be a security parameter, IBI = (MKg,UKg,P,V) be
an IBI scheme, and A = (CV,CP) be an adversary. Consider the experiment of
Figure 3.3. The type of attack atk ∈ {pa, aa, ca} is a parameter, and the adver-
sary has access to the oracles shown in the same figure. Let atk ∈ {pa, aa, ca}.
The imp-atk advantage of A in attacking IBI is

Advimp-atk
IBI ,A

(k) = Pr
[
Expimp-atk

IBI ,A
(k) = 1

]
.

We say that IBI is an imp-atk-secure IBI scheme if Advimp-atk
IBI ,A

(·) is negligible

for every polynomial-time A.

The main difference with the SI experiment is that A can initialize or corrupt
identities of its choice through the Init and Corr oracles. This models the pos-
sibility that the adversary itself is a user of the system, possibly even colluding
with other users. HU is the set of honest users, and CU is the set of corrupted
users. At the end of its execution, CV transfers its state to CP and outputs an
uncorrupted identity J . In the second stage, CP will try to impersonate J . An
element of this definition worth drawing attention to is that we have allowed
CP to query the same oracles as CV. This allows CP to initialize, corrupt, in-
teract with, or see conversations involving certain identities depending on the
challenge it gets from the verifier. The only restriction is that CP cannot submit
queries involving J because otherwise impersonating J would become trivial.
The restrictions are all enforced by the oracles themselves. (At the end of the
first stage, J is removed from HU and added to CU .)

3.2.2 Signature Schemes

We recall security definitions for SS and IBS schemes [GMR88, CC03, DKXY03].

Standard signature schemes and their security. A standard signature
(SS) scheme SS is a triple of algorithms (Kg,Sign,Vf). On input 1k, where k is
the security parameter, the randomized key generation algorithm Kg returns a
fresh key pair (pk , sk). On input a secret key sk and a message M , the possibly
randomized signing algorithm Sign returns a signature σ. On input pk , M , and a
signature σ, the deterministic verification algorithm Vf returns 1 to indicate that
σ is a valid signature for M under pk , or returns 0 otherwise. In the random
oracle model, the last two algorithms have access to a random oracle H. We
require that, for all (pk , sk) ∈ Kg(1k) and for all messages M ∈ {0, 1}∗, it is
always the case that Vf(pk ,M,Sign(sk ,M)) = 1.

We use the security notion of existential unforgeability under chosen-message
attack (uf-cma) [GMR88], which is the following. The experiment generates a
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fresh key pair (pk , sk)
R← Kg(1k) and runs the adversary F, also called the

forger, on input pk . The forger has access to a signing oracle Sign that on input

message M returns a signature σ
R← Sign(sk ,M). At the end of its execution,

F outputs a forgery consisting of a message M and a forged signature σ. The
forger wins the game if Vf(pk ,M, σ) = 1 while M was not previously queried to
the Sign oracle. We define the uf-cma advantage of F in breaking SS , denoted
as Advuf-cma

F,SS (k), to be the probability that F wins the game.

While existential unforgeability under chosen-message attack is commonly
regarded as the most useful security notion for SS schemes, we will occasionally
use other notions in proofs or attacks. Variations exist on both the adversarial
goal and the attack model. As for the latter, we mention the less powerful (re-
sulting in weaker security notions) known-message attack, where the adversary
sees signatures of messages chosen by the experiment, and no-message attack,
where the adversary doesn’t get to see any signatures at all. Alternative ad-
versarial goals include the weaker notion of universal unforgeability where the
forger has to be able to sign any message instead of just some message, and the
stronger notion of non-malleability [SPMLS02] that also accepts a new (differ-
ent) signature on a previously signed message as a valid forgery.

Identity-based signature schemes and their security. An identity-
based signature (IBS) scheme is a tuple IBS = (MKg,UKg,Sign,Vf) of poly-
nomial-time randomized algorithms. The trusted, key-issuing authority runs
the master-key generation algorithm MKg on input 1k, where k is a security pa-
rameter, to obtain a master public and secret key pair (mpk ,msk). It can then
run the user-key generation algorithm UKg on msk and the identity I ∈ {0, 1}∗,
thus generating for the user I a secret key usk which is then securely communi-
cated to I. On input usk and a message M , the signing algorithm Sign returns
a signature of M . On input mpk , I,M, and a signature σ, the verification algo-
rithm Vf returns 1 to indicate that σ is a valid signature for M under mpk for
identity I, or returns 0 otherwise. We require that, for all k ∈ N, M ∈ {0, 1}∗,
and I ∈ {0, 1}∗,

Pr

[
Vf(mpk , I,M, σ)=1 | (mpk ,msk)

R← MKg(1k) ;

usk
R← UKg(msk , I) ; σ

R← Sign(usk ,M)

]
= 1 .

We first provide the formal definition and then the explanations. Let k ∈ N be
a security parameter, IBS = (MKg,UKg,Sign,Vf) be an IBS scheme, and F be
an adversary. Consider the experiment below. The adversary has access to the
oracles shown in Figure 3.4:
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Oracle Init(I)
If I ∈ CU ∪HU then return ⊥
usk [I]

R← UKg(msk , I)
MSG [I]← ∅ ; HU ← HU ∪ {I}
Return 1

Oracle Sign(I,M)
If I 6∈ HU then return ⊥
σ

R← Sign(usk [I],M)
MSG [I]← MSG [I] ∪ {M}
Return σ

Figure 3.4: Oracles provided to an adversary attacking an identity-based signa-
ture scheme IBS = (MKg,UKg,Sign,Vf). The oracle Corr is the same as that
in Figure 3.3 and thus is not shown here.

Experiment Expuf-cma
IBS ,F

(k)

(mpk ,msk)
R← MKg(1k)

HU ← ∅ ; CU ← ∅
(I,M, σ)

R← F(mpk : Init(·),Sign(·, ·),Corr(·))
If (I ∈ HU and Vf(mpk , I,M, σ) = 1 and M 6∈ MSG [I])
then return 1 else return 0

The uf-cma advantage of F in attacking IBS is

Advuf-cma
IBS ,F

(k) = Pr
[
Expuf-cma

IBS ,F
(k) = 1

]
.

We say that IBS is a secure IBS scheme if Advuf-cma
IBS ,F

(·) is negligible for every

polynomial-time adversary F.
Via Init(I), the adversary F can create a user I. Invisibly to the adversary,

a secret key denoted usk [I] is assigned to I. Via Sign(I,M), it can obtain I’s
signature on a message M of its choice. Via Corr(I), it can compromise I’s
secret key usk [I]. To win, F must output the identity I of an uncorrupted user,
a message M , and a signature σ such that Vf(mpk , I,M, σ) = 1 while I did
not previously sign M . Here, HU is the set of honest users, CU is the set of
corrupted users, and MSG [I] is the set of messages that I has signed. As always,
the uf-cma advantage of F is the probability that it wins the game.

3.3 Certification-Based IBI and IBS

There is a natural way to construct IBI and IBS schemes using certificates. The
idea is simply that the authority can issue a certificate, consisting of a signature
of a user’s identity and “public key,” the latter being the value the authority
chooses and provides to the user along with a matching secret key. By including
this public key and certificate in a signature under the authority’s secret key,
verification of this signature becomes possible given only the authority public
key and identity of the user, and hence is identity-based.
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We believe that the scheme is folklore, but it is worth detailing and proving
for several reasons. One is that it shows that IBI and IBS are achievable without
random oracles (by instantiating the underlying SS-scheme with a scheme that
is secure in the standard model [GHR99, CS00]). All the practical schemes we
consider do use random oracles. Another is that this scheme is a benchmark
relative to which practical schemes should measure their efficiency.

Note that no such simple trick works for identity-based encryption without
disrupting the communication pattern that the sender initiates the commu-
nication by sending a ciphertext encrypted with the recipient’s public key. A
certificate-based IBE scheme can only be constructed at the price of an extra
round of interaction.

We now provide some details, showing the design of an IBI scheme based
on any SI scheme and any SS scheme. One can analogously design an IBS
scheme based on any SS scheme. Let SI = (Kg,P,V) be a SI scheme, and
let SS = (SKg,Sign,Vf) be a SS scheme. We associate to them an IBI scheme
IBI = (MKg,UKg,P,V) whose constituent algorithms are as follows. The master
key generation algorithm MKg is simply SKg, so that the master secret key
msk can be used to produce signatures verifiable under mpk . To issue a secret
key usk to a user with identity I, the authority first runs Kg(1k) to obtain
a public and secret key pair (pk , sk) for the SI scheme. It then creates the
certificate cert ← (pk ,Sign(msk , pk‖I)). (The identity need not be included
in the certificate, as it is passed as a parameter to the verification algorithm
anyway.) It sets usk ← (sk , cert) and sends the latter to I. The interactive
algorithm P, run by I to identify itself, runs P, initializing the latter with sk ,
and includes cert in the first flow sent to the verifier. The interactive algorithm V,
run by the verifier, has inputs mpk , I. In the first move it receives cert along with
any information that P has sent on its first move. It then verifies the signature
on the certificate cert . If the certificate is invalid, V halts and rejects. Otherwise,
it runs V, initializing the latter with pk . It accepts if V accepts. Construction 3.1
and Figure 3.5 describe this construction in detail. Theorem 3.2 says that the
construction is secure.

Construction 3.1 (Certificate-based IBI) Given a standard identification
scheme SI = (Kg,P,V) and a (standard) signature scheme SS = (SKg,Sign,Vf),
we associate to them an IBI scheme IBI = (MKg,UKg,P,V) whose constituent
algorithms are depicted in Figure 3.5.

Theorem 3.2 (Security of Certificate-based IBI) Let SI be a SI scheme,
and SS a uf-cma secure SS scheme. Let IBI be the corresponding certificate-
based IBI scheme as per Construction 3.1. If SI is imp-atk secure then IBI is
imp-atk secure, for any atk ∈ {pa, aa, ca}.
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MKg(1k) :
(mpk ,msk)← SKg(1k)
Return (mpk ,msk)

UKg(msk , I; k) :
(pk , sk)← Kg(1k)
cert ← (pk ,Sign(msk , pk‖I))
usk ← (sk , cert)
Return usk

P(Min,St
P
) :

If St
P

parses as (sk , cert) then
(Mout,St

P
)← P(Min, sk)

Mout ← cert‖Mout

Else (Mout,St
P
)← P(Min,St

P
)

Return (Mout,St
P
)

V(Min,St
V
) :

If Min parses as cert‖M then
Parse cert as (pk , σ)
Parse St

V
as (mpk , I)

Min ←M
If Vf(mpk , pk‖I, σ) 6= 1 then

St
V
← rej else St

V
← pk

(Mout,St
V
)← V(Min,St

V
)

Figure 3.5: A certificate-based IBI scheme IBI = (MKg,UKg,P,V) constructed
from a standard identification scheme SI = (Kg,P,V) and a digital signature
scheme SS = (SKg,Sign,Vf).

Proof: Given A = (CV,CP) attacking IBI , we construct a forger algorithm
F attacking SS and an impersonator A attacking SI . Impersonator A can im-
personate a user in two ways: either by forging a certificate, or by reusing an
existing certificate but exploiting a weakness in the underlying SI scheme. The
first type of impersonation can be used to forge signatures for SS , the second
type can be used to break the SI scheme.
We first present the forger algorithm F. It gets a public key mpk for SS as
input, and access to a Sign oracle initialized with the corresponding secret key.
F runs CV on input mpk , answering its oracle queries using the algorithms of IBI
exactly as the real experiment would, but calling its Sign(pk I‖I) to generate
certificates associating identities I to their public key pk I . It is clear that this
is a perfect simulation of CV’s environment. When CV halts and announces the
identity J that will be attacked, F runs CP on the initial state passed to it by
CV. The forger F answers CP’s oracle queries as before until the cheating prover
outputs its first message cert‖M . The certificate is parsed as (pk , σ). In the
event E that pk 6= pkJ (where pkJ is the public key that F once generated for
identity J), F outputs σ as its forgery for message pk‖J , otherwise F aborts. We
can bound the advantage of F in breaking SS from below as

Advuf-cma
SS ,F (k) ≥ Pr

[
Expimp-atk

IBI ,A
(k) = 1 ∧E

]
. (3.1)

We now describe the impersonator A = (CV,CP) attacking the underlying SI
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scheme. Algorithm CV gets a public key pk as input, and has access to a con-
versation oracle Conv (passive attack) or a prover oracle Prov(·) (active and
concurrent attack). Its strategy is to simulate CV’s environment exactly as in
a real attack, except for one identity Iguess that it will simulate using its own
oracles and that it hopes to be the identity J that CP will attack in the second
stage of the game. Guessing an identity Iguess from the infinite set {0, 1}∗ is
of course infeasible. We know however that CV must first initialize the iden-
tity using a query to the Init oracle, so instead, CV chooses a random integer

qguess
R← {1, . . . ,QInit

CV
} and assigns to Iguess the argument of CV’s qguess-th Init

query. For all identities other than Iguess, CV simulates CV’s oracles exactly
as the real experiment would, generating one fresh key pair (mpk ,msk) for SS
to sign certificates, and generating a fresh SI key pair (pk I , sk I) for each ini-
tialized identity I. In reply to CV’s qguess-th initialization query, however, CV
creates a certificate linking the public key pk to identity Iguess. To answer CV’s
Conv(Iguess) or Prov(Iguess, ·, ·) queries, CV queries its own Conv or Prov(·, ·)
oracle and forwards the reply (concatenated with the identity’s certificate on the
first move) to CV. If CV asks to corrupt Iguess, CV gives up. It is clear that the
simulation of CV’s environment is perfect as long as Iguess remains uncorrupted.
From CV’s point of view, all initiated identities are alike, so it has no more
reason to corrupt Iguess than to corrupt any other identity. Since the case we
are interested in is when Iguess becomes the identity under attack in the second
stage of the game, and since only uncorrupted identities can be attacked, such
query will not occur whenever it actually matters to CV.

At the end of its execution, CV outputs the identity to be attacked J and state
information St

CP
. If J 6= Iguess, CV gives up. Otherwise, it announces to be

ready to proceed to the second stage of the game, outputting state information
for CP containing pk , St

CP
and all keys generated to answer CV’s oracle queries.

Algorithm CP runs CP(ε,St
CP

), answering CP’s oracle queries in the same way

CV did for CV. (Note that CP is not allowed to make queries involving J any-
more.) Let cert‖M be the first message output by CV. In the event E that the
public key pk ′ included in the certificate is different from pk , CP gives up. Oth-
erwise, it sends M as its own first message to the honest verifier V, and it keeps
sending messages back and forth between CP and V until the latter accepts or
rejects. It is clear that if CP’s impersonation is successful, V will accept, so we
can bound the advantage of A as

Advimp-atk
SI ,A (k) ≥ Pr

[
Expimp-atk

IBI ,A
(k) = 1 ∧E ∧ J = Iguess

]

= Pr
[
Expimp-atk

IBI ,A
(k) = 1 ∧E

]
· Pr [J = Iguess]

=
1

QInit

CV

· Pr
[
Expimp-atk

IBI ,A
(k) = 1 ∧E

]
, (3.2)
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where the second line is true because the event J = Iguess is independent of the
other two since CV’s view is independent of CV’s choice for Iguess, and the last
line is true because CV guesses correctly with probability 1/QInit

CV
.

By combining Equation (3.1) and Equation (3.2), the advantage of an adversary
A = (CV,CP) attacking IBI can be bounded as

Advimp-atk
IBI ,A

(k) = Pr
[
Expimp-atk

IBI ,A
(k)

]

= Pr
[
Expimp-atk

IBI ,A
(k) ∧E

]
+ Pr

[
Expimp-atk

IBI ,A
(k) ∧E

]

≤ Advuf-cma
SS ,F (k) + QInit

CV
·Advimp-atk

SI ,A (k) ,

which proves the theorem.

3.4 Transformations between Schemes

3.4.1 The Fiat-Shamir Transform

So-called canonical SI schemes can be transformed into signature schemes us-
ing the Fiat-Shamir transform [FS86], referred to as the fs-I-2-S transform here.
A standard identification scheme SI = (Kg,P,V) is said to be canonical if it
follows a three-move structure where the prover initiates the communication
with a commitment Cmt distributed uniformly over a set CmtSet(sk) possi-
bly depending on the secret key, the verifier sends back a challenge Ch chosen
uniformly from a set ChSet(pk) possibly depending on the public key, and the
prover complies with a response Rsp. The verifier’s decision to accept or reject is
a deterministic function Dec(pk ,Cmt‖Ch‖Rsp) of the public key and the com-
munication transcript. Let the commitment length be the greatest integer β(k)
such that |CmtSet(sk)| ≥ 2β(k) for all (pk , sk) ∈ [Kg(1k)]. The scheme is said to
be non-trivial if β(k) is a super-logarithmic function in k. 1

Construction 3.3 (The fs-I-2-S Transform [FS86]) Let SI = (Kg,P,V) be
a non-trivial canonical standard identification scheme as defined above with
challenge set function ChSet and decision function Dec. We associate to SI a
standard signature scheme SS = fs-I-2-S(SI ) = (Kg,Sign,Vf) that has the same
key generation algorithm as SI . The signing and verification algorithms have
access to a random oracle H : {0, 1}∗ → ChSet(pk) and are defined as follows:

1The canonicity definition used here is more restrictive than the one used by Abdalla et
al. [AABN02], which allows Cmt to be chosen according to any distribution over CmtSet(sk).
This however complicates the non-triviality condition, requiring β(k) to be defined as the min-

entropy of the distribution. Since all schemes treated in this thesis have uniformly distributed
commitments, we restrict ourselves to the simpler definition here.
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Algorithm Sign(sk ,M : H)

(Cmt ,StP)
R← P(ε, sk)

Ch ← H(Cmt‖M)

(Rsp,StP)
R← P(Ch,StP)

Return Cmt‖Rsp

Algorithm Vf(pk ,M, σ : H)
Parse σ as Cmt‖Rsp
Ch ← H(Cmt‖M)
Return Dec(pk ,Cmt‖Ch‖Rsp)

The following is a special case of Lemma 3.5 of Abdalla et al. [AABN02] for
seed length s(k) = 0. It relates the security of SS to that of the underlying
identification scheme.

Theorem 3.4 (Security of fs-I-2-S) Let SI be a non-trivial canonical standard
identification scheme with commitment set CmtSet, and let SS = fs-I-2-S(SI ) be
the associated signature scheme as per Construction 3.3. Then SS is unforgeable
under chosen-message attack (uf-cma) in the random oracle model if SI is secure
against impersonation under passive attack (imp-pa). Moreover, if F is a forger
attacking SS using QSign

F
sign-oracle queries and QH

F
queries to the random

oracle, then there exists an impersonator A attacking SI such that

Advuf-cma
SS ,F (k) ≤ (1 + QH

F )Advimp-pa
SI ,A (k) +

(1 + QH
F

+ QSign
F

)QSign
F

2β(k)
. (3.3)

Numerical interpretation. It may be useful to elaborate on the meaning of
reduction equations such as Equation (3.3). Since the number of oracle queries
of a polynomial-time forger F is also polynomial, it is clear from Equation (3.3)
that any forger F with non-negligible advantage in breaking SS gives rise to an
impersonator A with a possibly much smaller but still non-negligible advantage
in breaking SI . Although this is an important asymptotical result, practitioners
may be more interested in concrete security claims as pointed out in Section 2.2.
From a quantitative point of view however, the guarantee offered by the above
theorem is not as strong as one might hope. Suppose we allow the forger to
query the hash oracle QH

F
= 260 times, and to see QSign

F
= 230 signatures for

a scheme with commitment length β(k) = 160, then even if the probability of
breaking the SI scheme is estimated at 2−61, all Equation (3.3) says is that F’s
forging probability is smaller than about 1/2, which is not good enough.

The security lost through the transform can be compensated by using longer
keys, at the expense however of an increased computational overhead. By filling
in the advantage functions in Equation (3.3), we can compute how much longer
the keys of the SS scheme would have to be in order to obtain the same level
of security. For example, for an exponentially hard to break SI scheme, mean-
ing that Advimp-pa

SI ,A (k) = O(2−k), the keys of the SS scheme will have to be
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60 bits longer than those of the SI scheme. If however the only way to break
the SI scheme is by factoring a modulus of length k, we can take the advan-
tage function to be inversely proportional to the time complexity of the fastest

known factoring algorithm, which is O(e1.923|N |1/3 ln(|N |)2/3

) [LL93]. Putting this
in Equation (3.3) yields 3102 bits as the modulus length needed to achieve the
same security as the 1024-bit SI scheme. If the scheme involves cubic opera-
tion such as modular exponentiations, then this means that the computational
overhead is multiplied by almost a factor 28.

These numbers however do not imply that asymptotical security is worth-
less for practical purposes. Schemes with asymptotical security proofs are still
highly preferable over completely ad-hoc schemes, even if the reductions are
very “loose”. Moreover, having a proof for 3102-bit SS schemes does not neces-
sarily mean that we can actually attack the scheme when it is instantiated with
only 1024-bit moduli; a tighter proof might very well exist, maybe it just hasn’t
been found yet. (The lack of actual attacks is also the reason that tightness of
reduction is rarely taken into account when deciding on appropriate key sizes
in practice.) In this thesis we focus on asymptotical security as a first order
concern; second-order concerns such as tightness of reduction are definitely im-
portant issues that are worth to be addressed, but do not form the subject of
this thesis. (See also the future work suggestions in Section 5.3.)

3.4.2 Convertible Schemes and Our Transforms

In analogy with the definition of trapdoor signature schemes [DKXY03], we
define the concept of convertible identification schemes and show how to trans-
form these into IBI schemes. We use a slightly more general concept than
the trapdoor one-way permutations used by Dodis et al. [DKXY03] that we
will call trapdoor samplable relations. A relation R is a set of ordered pairs
(x, y) ∈ Dom(R) × Ran(R). We write the set of images of x ∈ Dom(R) as
R(x) = {y | (x, y) ∈ R} and the set of inverses of y ∈ Ran(R) as R−1(y) =
{x | (x, y) ∈ R}.

Definition 3.5 (Trapdoor Samplable Relations) A family of trapdoor sam-
plable relations F is a triplet of polynomial-time algorithms (TDG,Sample, Inv)
such that the following properties hold:

• Efficient generation: On input 1k, where k ∈ N is the security parameter,
TDG outputs the description 〈R〉 of a relation R in the family together
with its trapdoor information t;

• Samplability: The output of the algorithm Sample on an input 〈R〉 is a
pair (x, y) uniformly distributed over R;
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• Inversion: On input a relation description 〈R〉, the corresponding trapdoor
t, and an element y ∈ Ran(R), algorithm Inv outputs a random element
of R−1(y);

• Regularity: Every relation R in the family is regular, meaning that the
number of inverses |R−1(y)| is the same for all y ∈ Ran(R).

Note that this definition does not ask that any computational problem relating
to the family be hard. (For example, there is no “one-wayness” requirement.)
We do not need any such assumption. However, the assumed security of a cSI
scheme based on the family (as will be introduced shortly) implies one-wayness
of the family in the sense that computing an x such that R(x, y) holds, given
〈R〉, y with y drawn at random, is hard without knowing the matching trapdoor.

We also note that the relations are not required to be computable, meaning
that there does not have to exist a polynomial-time algorithm that returns a
member of R(x) on inputs 〈R〉, x. In the examples we will see, such an algorithm
sometimes exists and sometimes does not (e.g. for the pairing-based schemes).

Definition 3.6 (Convertible SI Schemes) A SI scheme SI = (Kg,P,V) is
said to be convertible if there exists a family of trapdoor samplable relations
F = (TDG,Sample, Inv) such that for all k ∈ N the output of the following is
distributed identically to the output of Kg(1k):

(〈R〉, t) R← TDG(1k)

(x, y)
R← Sample(〈R〉)

pk ← (〈R〉, y) ; sk ← (〈R〉, x)
Return (pk , sk)

The following describes the cSI-2-IBI transform of a convertible SI (cSI) scheme
into an IBI scheme. The idea is that to each identity I we can associate a
value that is derivable from the master public key and I. This value plays the
role of a public key for the underlying cSI scheme. This “pseudo public key” is
(〈R〉,H(I)), where H is a random oracle.

Construction 3.7 (The cSI-2-IBI Transform) Let SI = (Kg,P,V) be a cSI
scheme, and let F = (TDG,Sample, Inv) be the family of trapdoor samplable
relations that underlies it as per Definition 3.6. The cSI-2-IBI transform asso-
ciates to SI the random-oracle model IBI scheme IBI = (MKg,UKg,P,V) whose
components we now describe. The master and user key generation algorithms
are defined as
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Algorithm MKg(1k)

(〈R〉, t) R← TDG(1k)
mpk ← 〈R〉
msk ← (〈R〉, t)
Return (mpk ,msk)

Algorithm UKg(msk , I : H)
Parse msk as (〈R〉, t)
x

R← Inv(〈R〉, t,H(I))
usk ← (〈R〉, x)
Return usk

where H : {0, 1}∗ → Ran(R) is a random oracle. The prover algorithm P is
identical to P. The verifier algorithm V(·, · : H) parses its initial state as (〈R〉, I)
and runs V on initial state (〈R〉,H(I)).

The following theorem says that cSI-2-IBI is security-preserving.

Theorem 3.8 (Security of cSI-2-IBI) Let SI be a cSI scheme and let IBI =
cSI-2-IBI(SI ) be the associated IBI scheme as per Construction 3.7. For any
atk ∈ {pa, aa, ca}, if SI is imp-atk secure then IBI is imp-atk secure.

Proof: Given any adversary A = (CV,CP) mounting an imp-atk attack on
IBI , we show that there exists an adversary A = (CV,CP) mounting an imp-atk
attack on SI such that

Advimp-atk
IBI ,A

(k) ≤ (1 + QH

CV
) ·Advimp-atk

SI ,A (k) (3.4)

and where the algorithms CV and CP have running times TCV = O(T
CV

+Q
CV

)

and TCP = O(T
CP

+ QH

CP
), respectively. The theorem follows.

We first sketch the algorithm, and then provide a detailed description. The
CV algorithm gets a public key pk = (〈R〉, y) as input and has access to either a
Conv oracle (passive attack) or a Prov oracle (active and concurrent attack).
Its strategy is to guess in advance the identity J that CV will try to attack and
simulate the environment of CV such that it can use CP to its own advantage
in the second stage of the experiment. Guessing an identity from the infinite
set {0, 1}∗ is of course infeasible. Instead, we assume that CV queries its hash
oracle on J before passing control to CP (if it doesn’t, we let CV query H(J)

itself), so that CV can guess the index qguess
R← {1 . . .QH

CV
+ 1} of the crucial

hash query in advance. It then runs CV on input mpk = 〈R〉, simulating CV’s
oracle queries as follows (we ignore the bookkeeping of honest and corrupted
identities here):

– H(I): If I was queried before, return the same value as before. If this is
the qguessth unique hash query, then let Iguess ← I and return y (that was
part of CV’s input) as the hash value. Otherwise, return the second part
of a pair generated by the Sample algorithm as the hash value, and keep
the first part as the corresponding user secret key.

– Init(I): Run H(I) and return 1.
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– Conv(I) (or Prov(I, s)): If I = Iguess, forward a conversation (response)
generated by CV’s own conversation (prover) oracle, otherwise simulate a
real conversation (prover) using the user secret key stored during the first
H(I) query.

– Corr(I): If I = Iguess, abort. Otherwise, return the user secret key cor-
responding to I.

until CV returns the identity to be impersonated J and state information for
CP. If J 6= Iguess, meaning that CV’s guess was wrong, it aborts. If J = Iguess

however, CV proceeds to the second phase of the game and transfers control
to the cheating prover CP. On any incoming message Min, CP simply forwards
CP’s reply to the same message, answering CP’s oracle queries in the same way
as CV did before, but returning ⊥ on Conv, Prov and Corr requests for J .

A detailed description of algorithms CV,CP is given below. Given an ad-
versary A = (CV,CP) mounting an imp-atk attack on IBI , we construct an
adversary A = (CV,CP) mounting an imp-atk attack on SI as follows (the sub-
routines used to simulate CV’s and CP’s oracles are given in Figure 3.6):

Algorithm CV(pk : Or) // Or is a conversation oracle if atk = pa

Parse pk as (〈R〉, y) // and a prover oracle if atk ∈ {aa, ca}

mpk ← 〈R〉
HU ← ∅ ; CU ← ∅ ; QU ← ∅ // honest, corrupted and queried users

PID ← ∅ // set of running prover sessions

qguess
R← {1, . . . ,QH

CV
+ 1} // guess for crucial hash query

If atk = pa then (J,St
CP

)
R← CV(mpk : Init-sim,Corr-sim,Conv-sim,H-sim)

Else (J,St
CP

)
R← CV(mpk : Init-sim,Corr-sim,Prov-sim,H-sim)

If |QU | < qguess or J 6= Iguess then abort
HU ← HU \ {J} ; CU ← CU ∪ {J}
StCP ← (St

CP
, 〈R〉,HU ,CU ,QU ,HTbl ,UTbl , Iguess, qguess)

// tables HTbl and UTbl contain hash values and user secret keys

Return (J,StCP)

Algorithm CP(Min,StCP)
Parse StCP as (St

CP
, 〈R〉,HU ,CU ,QU ,HTbl ,UTbl , Iguess, qguess)

If atk = pa then

(Mout,St
CP

)
R← CP(Min,St

CP
: Init-sim,Corr-sim,Conv-sim,H-sim)

Else (Mout,St
CP

)
R← CP(Min,St

CP
: Init-sim,Corr-sim,Prov-sim,H-sim)

StCP ← (St
CP
, 〈R〉,HU ,CU ,QU ,HTbl ,UTbl , Iguess, qguess)

Return (Mout,StCP)

Let us explain why CV and CP create a perfect simulation of A’s environ-
ment. The input of CV is correctly distributed because by Definition 3.6 and
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Subroutine Init-sim(I)
If I ∈ CU ∪HU then return ⊥
temp ← H-sim(I)
HU ← HU ∪ {I}
Return 1

Subroutine Corr-sim(I)
If I 6∈ HU then return ⊥
CU ← CU ∪ {I}
HU ← HU \ {I}
If I = Iguess then abort
Return (〈R〉,UTbl [I])

Subroutine Conv-sim(I)
If I 6∈ HU then return ⊥
If I = Iguess then C ← Or(ε)
Else

R
P

R← {0, 1}ρP ; R
V

R← {0, 1}ρV

St
P
← (〈R〉,UTbl [I])

St
V
← (〈R〉,HTbl [I])

Min ← ε ; C ← ε
While St

V
6∈ {acc, rej} do

(Mout,St
P
)← P(Min,St

P
,R

P
)

(Min,St
V
)← V(Mout,St

V
,R

V
)

C ← C‖Mout‖Min

Return C

Subroutine H-sim(I)
If I 6∈ QU then

QU ← QU ∪ {I}
If |QU | = qguess then
Iguess ← I ; HTbl [I]← y

Else (UTbl [I],HTbl [I])
R← Sample(〈R〉)

Return HTbl [I]

Subroutine Prov-sim(I, s,Min)
If I 6∈ HU then return ⊥
If I = Iguess then
Mout ← Or(s,Min)

Else
If (I, s) 6∈ PID then

If atk = aa then
PID ← {(I, s)}

If atk = ca then
PID ← PID ∪ {(I, s)}

R
P

R← {0, 1}ρP

St
P
[I, s]← (〈R〉,UTbl [I],R

P
)

(Mout,St
P
[I, s])←

P(Min,St
P
[I, s] : H-sim)

Return Mout

Figure 3.6: Subroutines of CV and CP used to simulate CV’s and CP’s oracles in the
proof of Theorem 3.8.

Construction 3.7 both the relation description included in the public key pk of
a cSI scheme and the relation description included in the master public key mpk
of its cSI-2-IBI transform are generated by the same algorithm TDG(1k).

The regularity of R and the uniform distribution of the output of the Sample
algorithm over R together imply that H-sim(I) = HTbl [I] is uniformly dis-
tributed over Ran(R) and that UTbl [I] is uniformly distributed over the in-
verses of the entries of HTbl [I], exactly like the outputs of a real random oracle
and the UKg algorithm. The correct distribution of the entries of UTbl as user
secret keys for all I 6= Iguess also insures that the replies of the Conv, Prov and
Corr oracles are identically distributed as those in a real attack on IBI . The
same is true for the Conv and Prov oracles for I = Iguess, because the secret
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key sk underlying A’s conversation or prover oracle is also uniformly distributed
over R−1(H-sim(I)) by Definition 3.6.

The only possible whistle-blower is the Corr oracle, which gives up when
queried on I = Iguess instead of returning the corresponding user secret key.
The occurrence of such query, however, means that A was bound to lose the
game anyway, since the identity impersonated by CP must be an uncorrupted
identity and can under no circumstances be equal to Iguess anymore. So in the
cases that matter to A, the query will simply not occur.

The initial state of CP is generated by CV as it is supposed to, and CP’s in-
coming protocol messages are correctly distributed because by Construction 3.7
V runs V as a subroutine. The replies from CP’s oracles are identical to those
in a real attack for the same reasons.

So conditioned on the event that J = Iguess, the simulation of A’s envi-
ronment is perfect. This means that A’s impersonation is successful whenever
J = Iguess and A succeeds, and that A’s advantage can be lower bounded as

Advimp-atk
SI ,A (k) ≥ Pr

[
J = Iguess ∧Expimp-atk

IBI ,A
(k) = 1

]

= Pr [J = Iguess] · Pr
[
Expimp-atk

IBI ,A
(k) = 1

]

≥ 1

1 + QH

CV

·Advimp-atk
IBI ,A

(k)

where the first equality holds because the simulation of A’s environment is per-
fect and hence J = Iguess and A’s success are unrelated events. The claims for
the running times of CV and CP can easily be verified from the descriptions of
the algorithms.

Convertibility of a standard signature (SS) scheme SS = (Kg,Sign,Vf) is de-
fined by analogy to Definition 3.6. (The condition is only on the key-generation
algorithm.) The cSS-2-IBS transform is defined analogously to the cSI-2-IBI
transform:

Construction 3.9 (The cSS-2-IBS Transform) To any convertible SS (cSS)
scheme SS = (Kg,Sign,Vf), the cSS-2-IBS transform associates an IBS scheme
IBS = cSS-2-IBS(SS) = (MKg,UKg,Sign,Vf) where the master and the user
key generators are exactly as in Construction 3.7, and where Sign(usk , ·) and
Vf(mpk , I, ·, · : H) are implemented as Sign(usk , ·) and Vf((mpk ,H(I)), ·, ·), re-
spectively.

The proof of the following analogue of Theorem 3.8 showing that the cSS-2-IBS
transform is security preserving is similar to the proof of Theorem 3.8 and is
thus omitted.
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Theorem 3.10 (Security of cSS-2-IBS) Let SS be a cSS scheme and let IBS =
cSS-2-IBS(SS) be the associated IBS scheme as defined in Construction 3.9. If
SS is uf-cma secure then IBS is also uf-cma secure. Moreover, for any adversary
F attacking IBS , there exists an adversary F attacking SS such that

Advuf-cma
IBS ,F

(k) ≤ (1 + QH

F
) ·Advuf-cma

SS ,F (k) (3.5)

and where F runs in time O(T
F

+ QH

F
).

One can check that any trapdoor SS (tSS) scheme [DKXY03] is a cSS scheme,
and that their tSS-2-IBS transform coincides with cSS-2-IBS in case the starting
cSS scheme is trapdoor. Thus, Theorem 3.10 represents a (slight) extension of
their result. However, the extension is important, for we will see cases of cSS
schemes that are not trapdoor and where the extension is needed.

By Theorem 3.4 we know that if SI is an imp-pa secure SI scheme, then
fs-I-2-S(SI ) is a uf-cma secure SS scheme [AABN02]. Because the convertibil-
ity property only imposes requirements on the key generation algorithm, which
is left untouched by the fs-I-2-S transform, one can also see that the fs-I-2-S
transform of a canonical cSI scheme is a cSS scheme. Combining this with
Theorem 3.10 yields the following, which will be our main tool to prove se-
curity of IBS schemes. All practical SI and IBI schemes considered in this paper
are canonical.

Corollary 3.11 Let SI be a non-trivial canonical cSI scheme, and let IBS =
cSS-2-IBS(fs-I-2-S(SI )) as per Construction 3.9. If SI is imp-pa secure then IBS
is uf-cma secure.

The above corollary gives a purely asymptotical security claim for the IBS
scheme. By combining Equations (3.3) and (3.5), one can see that the concrete
security reduction from the IBS to the cSI scheme is particularly loose due to the
multiplication of the factors QH

F
in Equation (3.3) and QH

F
in Equation (3.5).

Theoretically speaking, this means that a factoring-based IBS scheme, when
faced with an adversary capable of doing 260 queries to both random oracles,
needs to use 6701-bit moduli to achieve the same level of security as a 1024-bit
SI scheme.

The canonicity definition for SI schemes is easily extended to IBI schemes,
the only modification being that the verifier’s decision is a deterministic func-
tion Dec((mpk , I),Cmt‖Ch‖Rsp) of the master public key mpk , the user’s iden-
tity I and the communication transcript. One can apply the fs-I-2-S transform
to a canonical IBI scheme to obtain an IBS scheme, and one can check that
cSS-2-IBS(fs-I-2-S(SI )) = fs-I-2-S(cSI-2-IBI(SI )) for any canonical cSI scheme
SI . It follows that fs-I-2-S yields a uf-cma secure IBS scheme if it is applied to
a converted IBI scheme, meaning one that is obtained as the result of applying
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cSI-2-IBI to some (canonical) cSI scheme. However, one can also apply fs-I-2-S
to a canonical IBI scheme that is not converted and get an IBS scheme, and
there will be instances later where we would like to do this. Unfortunately, the
IBS scheme so obtained need not be secure, in the sense that the analogue of
the result of Theorem 3.4 does not hold, as shown by the following proposition.

Proposition 3.12 Assume there exists an imp-pa secure canonical IBI scheme.
Then, there exists an imp-pa secure canonical IBI scheme IBI such that IBS =
fs-I-2-S(IBI ) is not uf-cma secure.

Proof: Let IBI be identical to the given imp-pa secure IBI scheme, except
that the decision function is relaxed so that the verifier also accepts when the
challenge is equal to the identity being verified. Since an imp-pa adversary has
to commit to an identity J before the challenge is drawn, and since the latter is
drawn from a set of super-polynomial size (this follows from the assumed imp-pa
security of the original IBI scheme), this change will not affect the security of
the IBI scheme, meaning IBI is also imp-pa secure. However the corresponding
IBS scheme IBS = fs-I-2-S(IBI ) is insecure since a tuple (Cmt ,Rsp) is a valid
signature for message M under identity I = H(Cmt‖M).

We now provide a remedy for the above. We consider the extended Fiat-Shamir
transform efs-IBI-2-IBS, a modified version of the fs-I-2-S transform that hashes
the identity of the signer (prover) along with the commitment and message,
rather than merely hashing the commitment and message as in fs-I-2-S. We
show (by an extension of the proof of Abdalla et al. [AABN02] that, if this
transform is applied to a canonical imp-pa secure IBI scheme, then the outcome
is a uf-cma secure IBS scheme. We apply this in Section 3.6 to obtain uf-cma
secure IBS schemes from the two unconverted IBI schemes we consider, namely
OkDL-IBI and XDL-IBI .

Construction 3.13 (The efs-IBI-2-IBS Transform) Let IBI = (MKg,UKg,
P,V) be a canonical IBI scheme with commitment set function CmtSet(·), chal-
lenge set ChSet(·) and decision function Dec(·, ·, ·). The extended Fiat-Shamir
transform efs-IBI-2-IBS associates to IBI an IBS scheme IBS = efs-IBI-2-IBS(
IBI ) = (MKg,UKg′,Sign,Vf) defined as:
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Algorithm UKg′(msk , I)
usk ← UKg(msk , I)
usk ′ ← (usk , I)
Return usk ′

Algorithm Vf(mpk , I,M, σ : H)
Parse σ as Cmt‖Rsp
Ch ← H(I‖Cmt‖M)
Return Dec(mpk , I,Cmt‖Ch‖Rsp)

Algorithm Sign(usk ′,M : H)
Parse usk ′ as (usk , I)

(Cmt ,St
P
)

R← P(ε, usk)
Ch ← H(I‖Cmt‖M)

(Rsp,St
P
)

R← P(Ch,St
P
)

Return Cmt‖Rsp

where H : {0, 1}∗ → ChSet is a random oracle.

The following theorem states the result under this transform. It implies that,
given a canonical three-move IBI scheme secure under passive attacks, the cor-
responding IBS scheme under the extended FS transform is unforgeable under
adaptive chosen-message attacks in the random oracle model, assuming that the
commitment space is large enough.

Theorem 3.14 (Security of efs-IBI-2-IBS) Let IBI be a non-trivial canoni-
cal IBI scheme with commitment length β(k), and let IBS = efs-IBI-2-IBS(IBI )
be the corresponding IBS scheme as per the extended Fiat-Shamir transform of
Construction 3.13. If IBI is polynomially secure against impersonation under
passive attack, then IBS is polynomially unforgeable under chosen-message at-
tack in the random oracle model. Moreover, if F is a forger attacking IBS using
QSign

F
sign-oracle queries and QH

F
queries to the random oracle, then there exists

a passive impersonator A attacking IBI such that

Advuf-cma
IBS ,F

(k) ≤ (1 + QH

F
) ·Advimp-pa

IBI ,A
(k) +

(1 + QH

F
+ QSign

F
) ·QSign

F

2β(k)

where A’s running time is equal to O(T
F
+Q

F
) while the number of conversation

queries of A is at most 2 ·QSign

F
.

Proof: The proof of Theorem 3.14 follows a standard approach. Given F at-
tacking IBS , we construct A = (CV,CP) attacking IBI by running F properly
and using the forgery to impersonate the prover. First, CV guesses the index
of the hash query I‖Cmt‖M that will be involved in the forgery. We call this
hash query the crucial hash query. The adversary CV then runs F using its Init

oracle to answer F’s Init queries, its Corr oracle to answer F’s Corr queries,
and its Conv oracle to answer F’s random oracle and Sign queries (using the
challenges in the conversations as hash values). Upon receiving the crucial hash
query, CV announces that it will impersonate J = I and transfers control to
CP. CP then sends Cmt to V to obtain Ch and returns Ch as the answer to
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F’s (crucial) hash query. Assuming that CV guesses correctly, when F outputs
a forgery σ = Cmt‖Rsp for message M and identity J , the adversary CP sends
Rsp to V, thus completing the impersonation. Similar to the previous phase, if
F makes any queries during this phase, CP replies using its oracle access as did
CV discussed above.
The proof closely resembles that of Theorem 3.4 [AABN02]. We omit details
and make the following remarks. First, we point out that, as dictated in the
experiment Expimp-pa

IBI ,A
(k), the adversary CP is not allowed to submit queries

involving the identity J to the oracle Conv. However, it is possible that F makes
Sign and H queries involving J during CP’s simulation. We can get around this
problem by having CV query the Conv oracle for a batch of QSign

F
transcripts

for identity J right before transferring control to CP, resulting in the doubling
of A’s number of conversation oracle queries.
Finally, we point out that the proof here does not work for the fs-I-2-S transform
because CV needs to announce the identity to impersonate J before transferring
control to CP. Under the efs-IBI-2-IBS transform, the identity is part of the
crucial hash query and hence CV can already announce it to V and return
the challenge as the corresponding hash value. The same is not true under the
fs-I-2-S transform however, since the identity to be forged by F may not have
been initiated yet.

3.5 Applying the Framework

We now apply the above transform-based framework to prove security of ex-
isting and new IBI and IBS schemes. To do this, we consider numerous SI
schemes. (Some are known, some are new.) We show that they are convertible,
and then analyze their security. The implications for corresponding IBI and IBS
schemes, obtained via the transforms discussed above, follow from Theorem 3.8
and Corollary 3.11.

Reset Lemma. When proving the security of SI schemes, we will make heavy
use of Bellare and Palacio’s [BP02] Reset Lemma, which limits the success prob-
ability of a cheating prover CP in any canonical identification scheme as a func-
tion of the probability of obtaining two accepting conversations in a rewinding
experiment. This experiment tries to extract two correct responses to two differ-
ent challenges for the same commitment from the prover. Note that by making
abstraction of the verifier’s initial state, the Reset Lemma can be applied to
both SI and IBI schemes.

Lemma 3.15 (Reset Lemma [BP02]) Let CP be a prover in a canonical
standard or identity-based identification scheme with commitment length β(k),
challenge length ChSet(·) and decision function Dec. Let StV and let StCP be the
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initial states of the verifier and cheating prover, respectively. Let acc(StCP,StV)
be the probability that the verifier accepts when initiated with state StV after
interacting with CP initiated with StCP, and let res(StCP,StV) be the probability
that the following experiment returns 1:

RCP

R← {0, 1}ρCP ; (Cmt ,StCP)← CP(ε,StCP,RCP)

Ch1
R← ChSet(StV) ; (Rsp1,St ′CP)← CP(Ch1,StCP,RCP)

d1 ← Dec(StV,Cmt ,Ch1,Rsp1)

Ch2
R← ChSet(StV) ; (Rsp2,St ′CP)← CP(Ch2,StCP,RCP)

d2 ← Dec(StV,Cmt ,Ch2,Rsp2)
If (d1 = 1 and d2 = 1 and Ch1 6= Ch2) then return 1 else return 0

Then,

acc(StCP,StV) ≤ 2−β(k) +
√

res(StCP,StV). (3.6)

Zero-knowledge proofs. Most practical identification schemes are based on
zero-knowledge proofs. These were introduced by Goldwasser et al. [GMR89]
and first applied in identification schemes by Fiat and Shamir [FS86]. We refer
to the book by Goldreich [Gol01] for more details on zero-knowledge proofs.
A famous and extremely accessible introduction to zero-knowledge is given by
Quisquater et al. [QQQ+90].

Loosely speaking, zero-knowledge proofs are proofs that yield nothing but
the validity of a claim. More formally, a pair of interactive algorithms (P,V) is
an interactive proof system for a language L ⊆ {0, 1}∗ if V is polynomial-time
and

• Completeness: for all x ∈ L, there exists an auxiliary input y ∈ {0, 1}∗
such that with overwhelming probability V initialized with x accepts after
interacting with P, when initialized with y.

• Soundness: for all x 6∈ L, all interactive algorithms CP and all y ∈ {0, 1}∗,
V accepts with negligible probability after interacting with CP when ini-
tialized with x and y, respectively.

Intuitively, an interactive proof system is said to be zero-knowledge if the veri-
fier doesn’t learn anything new from the interaction with the prover, meaning
that anything it can compute afterwards, it could have computed before the
interaction as well. We say that an interactive proof system (P,V) is perfect
zero-knowledge if for every probabilistic polynomial-time interactive algorithm
CV, called the cheating verifier, there exists a probabilistic polynomial-time
(non-interactive) algorithm Sim, called the conversation simulator, such that
for every x ∈ L the output of the experiment
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T ← ε ; Min ← ε ; StP ← y ; StCV ← x
Repeat

(Mout,StP)
R← P(Min,StP)

(Min,StCV)
R← CV(Mout,Stbadv)

T ← T‖Min‖Mout

Until StCV ∈ {acc, rej}
Return T

is identically distributed to the output of Sim(x). The proof system is said to be
statistical zero-knowledge if the statistical distance between the above distribu-
tions is negligible in |x|, and is computational zero-knowledge if no probabilistic
polynomial-time can successfully distinguish between the above distributions
with probability non-negligibly better than 1/2. The weaker notion of honest-
verifier zero-knowledge (HVZK) only requires the above conditions to hold for
the honest verifier V, instead of for any possibly cheating verifier CV.

The proof systems as defined above are also referred to as proofs of member-
ship, because P proves that x is a member of the language L. Proofs of knowledge,
on the other hand, convince the verifier that the prover “knows” something. Let
R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation, and let LR = {x | (x, y) ∈ R}
be the language associated to R. We say that a pair of interactive algorithms
(P,V) is an interactive proof of knowledge system for R if V is a probabilistic
polynomial-time algorithm and if

• Completeness: V initialized with x accepts with overwhelming probability
after interacting with P initialized with y for all (x, y) ∈ R.

• Soundness: there exists a probabilistic polynomial-time algorithm Ext,
called the knowledge extractor, such that for every x ∈ LR and for every
polynomial-time interactive algorithm CP that has non-negligible proba-
bility of making V accept when initialized with x, Ext, on input x and
a description of algorithm CP, outputs y such that (x, y) ∈ R with non-
negligible probability.

Zero-knowledge proofs of knowledge are defined analogously to zero-knowledge
proofs of membership through the existence of a simulator.

Proofs of knowledge can be used to build standard identification schemes by
taking the first component of a tuple (x, y) ∈ R to be the public key, and the
second to be the secret key. The resulting SI scheme SI = (Kg,P,V) is secure
under active (respectively passive) attack (imp-aa) if (P,V) is a zero-knowledge
(respectively honest-verifier zero-knowledge) interactive proof of knowledge sys-
tem for the relation R = [Kg(1k)], and if computing secret keys from public
keys is hard. This is easily seen from the fact that an imp-pa/aa adversary
A = (CV,CP) can be turned into an algorithm that retrieves the secret key by
using the Sim algorithm to simulate provers (or conversations) for CV, and using
the Ext algorithm to extract the secret key from CP.
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Algorithm Kg(1k)

(N, p, q)
R← Kfact(1

k)
For i = 1 . . . t do

xi
R← Z

∗
N ; Xi ← xi

−2m

mod N
pk ← (N, (X1, . . . ,Xt)) ; sk ← (N, (x1, . . . , xt))
Return (pk , sk)

Prover P Verifier V

y
R← Z

∗
N

Y ← y2m

mod N Y
-

c
� c = (c1, . . . , ct)

R← Z
t
2m

z ← y
∏

i x
ci
i mod N z

-

If Y, z ∈ Z
∗
N

and Y ≡ z2m ∏
iX

ci
i mod N

then acc else rej

Figure 3.7: The ItR -SI and FS-SI schemes. The scheme is parameterized with
modulus generator Kfact, exponent m ≥ 1 and the number of roots t. The prover P and
verifier V are run on initial states sk = (N, (X1, . . . , Xt)) and pk = (N, (x1, . . . , xt)),
respectively. The FS -SI scheme is the special case for m = 1, and the scheme of Feige,
Fiat and Shamir [FFS88] is a slight variation with a Blum integer as the modulus N .

3.5.1 Schemes based on Factoring

The key generation algorithms of all factoring-based schemes are specified in
terms of an abstract modulus generator Kfact as defined in Section 2.3.1. We
make no assumptions on the modulus generator, except that the related factor-
ing problem (given N , compute p, q) cannot be solved in poly(k) time.

The Fiat-Shamir and the iterated-root schemes. Quite remarkably, the
scheme that can be considered as the mother of all identification schemes by
Fiat and Shamir [FS86] was already presented as an IBI scheme, denoted here
as FS -IBI . Later Feige et al. [FFS88] proposed a variant and proved it secure
under active attacks. The scheme was further generalized to L-th roots with
gcd(L,ϕ(n)) > 1 by Ohta and Okamoto [OO90] and to 2mth roots by Ong and
Schnorr [OS90]. We show this scheme in Figure 3.7 and call it the ItR -SI (for
iterated root) scheme. The descriptions of all schemes in this work explicitly
include membership tests on the messages sent by the prover, to prevent the
type of attacks described by Burmester and Desmedt [BD89] that e.g. send zero
as the commitment. Two related schemes due to Micali and Shamir [MS88]
and Guillou et al. [GUQ01] are, although based on the factoring assumption,
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not convertible because they use fixed values for Xi instead of random squares
modulo N .

Since FS -SI is the special case of ItR -SI in which m = 1, it suffices to show
that the latter is convertible. This is easily seen by considering the relation
R = {((x1, . . . , xt), (X1, . . . ,Xt)) |Xi ≡ x−2m

i mod N for i = 1, . . . , t} with de-
scription 〈R〉 = N and trapdoor (p, q). Pair sampling involves selecting random
elements from Z

∗
N , raising them to the 2m-th power, and inverting them modulo

N .

We note that FS -IBI = cSI-2-IBI(FS -SI ) is exactly the IBI scheme as pre-
sented by Fiat and Shamir [FS86] and FS -IBS = cSS-2-IBS(fs-I-2-S(FS -SI )) is
exactly their IBS scheme. We know that FS -SI is imp-pa and imp-aa secure as-
suming factoring is hard [FFS88], and this easily extends to imp-ca. Theorem 3.8
implies that FS -IBI inherits these security attributes. (Corollary 3.11 implies
the uf-cma security of FS -IBS assuming factoring is hard, but this was known
[DKXY03].)

We know that ItR -SI is imp-pa and imp-aa secure assuming factoring is
hard [Sho99, Sch96]. Theorem 3.8 implies that ItR -IBI = cSI-2-IBI(ItR -SI ) is
imp-pa and imp-aa secure assuming factoring is hard. Corollary 3.11 implies
that ItR -IBS = cSS-2-IBS(fs-I-2-S(ItR -SI )) is uf-cma assuming factoring is
hard, but this was known [DKXY03]. Whether ItR -SI is imp-ca secure, and
hence whether ItR -IBI is imp-ca secure, remains open.

In applying the cSI-2-IBI transform to the scheme, one must implement the
random oracle H : {0, 1}∗ → QRN with care (here QRN = {x2 mod N | x ∈
Z
∗
N} denotes the set of quadratic residues modulo N). Sampling random-looking

elements from QRN using standard hash functions may be hard without reveal-
ing a square root during the computation, since deciding whether an element
x ∈ Z

∗
N is a quadratic residue module N is assumed to be hard when the fac-

torization of N is unknown.

This is not a problem in the abstract random oracle model, where one can
simply mandate that H be chosen with domain {0, 1}∗ and range QRN , but the
resulting scheme is difficult to instantiate. In practice, one would like to build H

out of a cryptographic hash function like SHA-1 that has range {0, 1}160. Given
N , there are standard techniques that yield a hash function with range Z

∗
N

[BR93a]. This is possible because membership in Z
∗
N is decidable in polynomial

time given N , and also Z
∗
N is a “dense” subset of {0, 1}k where k is the bit-

length of N . However, there is no known way to build a function, computable
in polynomial time given the input and N alone, that has range QRN , because
membership in the latter is not (known to be) decidable in polynomial time
given N alone.

This problem can be overcome by using a Blum integer as the modulus
(i.e. take N = pq with p ≡ q ≡ 3 mod 4). Then it is well-known that −1
is a non-square modulo both p and q, and hence is a non-square modulo N
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Algorithm Kg(1k)

(N, p, q)
R← Kfact(1

k)

Choose τ ≥ η(p, q)− 1 ; g
R← HQRN

x1
R← Z2m ; x2

R← Z
∗
N ; X ← gx1x2τ+m

2 mod N
pk ← ((N, τ, g),X) ; sk ← ((N, τ, g), (x1, x2))
Return (pk , sk)

Prover P Verifier V

y1
R← Z2τ+m ; y2

R← Z
∗
N

Y ← gy1y2τ+m

2 mod N Y
-

c
� c

R← {0, 1}m
z1 ← y1 + cx1 mod 2τ+m

r ← b(y1 + cx1)/2
τ+mc

z2 ← gry2x
c
2 mod N z1, z2

-

If Y, z2 ∈ Z
∗
N and z1 ∈ Z2τ+m

and gz1z2τ+m

2 ≡ Y Xc mod N
then acc else rej

Figure 3.8: The FF -SI scheme. The scheme is parameterized with modulus gener-
ator Kfact and an exponent m ≥ 1. The prover P and verifier V are initialized with
states sk = ((N, τ, g), (x1, x2)) and pk = ((N, τ, g), X), respectively. The function
η(p, q) returns the smallest integer such that 2η(p,q) divides p− 1 or q − 1, and the set

HQRN = {x2η(p,q)

mod N | x ∈ Z
∗

N}.

with Jacobi symbol +1. As a consequence, for every element x ∈ Z
∗
N [+1] (the

elements of Z
∗
N with Jacobi symbol +1), either x or −x is a square modulo

N . If we change the ItR -SI scheme such that Xi
R← ±x2m

i mod N in the key
generation and change the verification equation accordingly, then the random
oracle maps bit strings to random elements of Z

∗
N [+1] (the elements of Z

∗
N with

Jacobi symbol +1), which can be done using standard techniques. These changes
do not affect security since the adversary gets even less information from the
public key, and since the relaxation of the verification will at most double its
impersonation advantage.

The Fischlin-Fischlin scheme. The FF -SI scheme was introduced by Fis-
chlin and Fischlin [FF02] as a fix to an attack they found on a scheme by
Okamoto [Oka93]. In the key-generation algorithm of Figure 3.8, η(p) denotes
the largest integer such that 2η(p) divides p − 1 and η(p, q) = max(η(p), η(q)).
FF -SI is shown to be imp-pa, imp-aa, and imp-ca secure assuming factoring is
hard [FF02]. The authors defined no IBI or IBS schemes. We can show that
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Algorithm Kg(1k)

(N, e, d)
R← Krsa(1

k)

x
R← Z

∗
N

X ← xe mod N
pk ← ((N, e),X)
sk ← ((N, e), x)
Return (pk , sk)

Prover P Verifier V

y
R← Z

∗
N

Y ← ye mod N Y
-

c
� c

R← {0, 1}l(k)

z ← xcy mod N z
-

If Y, z ∈ Z
∗
N and

ze ≡ XcY mod N
then acc else rej

Figure 3.9: The GQ -SI scheme. The scheme is parameterized with a prime-exponent
RSA key generator Krsa and a superlogarithmic challenge length l : N → N such that
2l(k) < e for all e output by Krsa on input 1k. The prover P and verifier V are initialized
with states sk = ((N, e), x) and pk = ((N, e), X), respectively.

FF -SI is convertible, and we thus obtain FF -IBI = cSI-2-IBI(FF -SI ) and
FF -IBS = cSS-2-IBS(fs-I-2-S(FF -SI )), and these are secure if factoring moduli
generated by Kfact is hard.

Let HQRN = {x2η(p,q)

mod N | x ∈ Z
∗
N} denote the set of higher quadratic

residues modulo N , which is also the subset of elements of Z
∗
N of odd order. To

show convertibility of FF -SI we consider the relation R ⊆ (Z2m×Z
∗
N )×HQRN

described by (N, g, τ) and containing tuples ((x1, x2),X) such that gx1x2τ+m

2 ≡
X mod N . The trapdoor is the factorization of N . Regularity holds since each
higher quadratic residue has exactly 2η(p)+η(q) different 2η(p,q)-th roots mod N ,
and hence also (because squaring is a permutation over HQRN and τ + m ≥
η(p, q)) 2η(p)+η(q) different 2τ+m-th roots modulo N . Pair sampling involves

choosing x1, x2 at random and computing X = gx1x2τ+m

2 .

Similar to ItR -SI , the application of cSI-2-IBI to this scheme must be done
with care when implementing the random oracle H : {0, 1}∗ → HQRN . Again

we can require N to be a Blum integer, compute X as ±gx1x2τ+m

2 mod N in

the Kg algorithm, and relax the verification to accept whenever gz1z2τ+m

2 ≡
±Y Xc mod N , such that the new range of the random oracle becomes Z

∗
N [+1].

3.5.2 Schemes based on RSA

All schemes based on RSA are described in terms of an RSA key generator Krsa

as defined in Section 2.3.1. A prime-exponent key generator only outputs keys
with e prime. Security of schemes is based on the hardness of the associated
RSA problem, or the associated one-more RSA problem.
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Algorithm Kg(1k)

(N, e, d)
R← Krsa(1

k)

x
R← Z

∗
N

X ← xe mod N
pk ← ((N, e),X)
sk ← ((N, e), x)
Return (pk , sk)

Prover P Verifier V

y
R← Z

∗
N

Y ← ye mod N Y
-

c
� c

R← {0, 1}l(k)

z ← xyc mod N z
-

If Y, z ∈ Z
∗
N and

ze ≡ XY c mod N
then acc else rej

Prover P∗ Verifier V∗

y
R← Z

∗
N

Y ← ye mod N Y
-

c
� c

R← {1, . . . , 2l(k)}
If c = 0 then abort
else z ← xyc mod N z

-

If Y, z ∈ Z
∗
N

and ze ≡ XY c mod N
then acc else rej

Figure 3.10: The Sh-SI = (Kg, P, V) and Sh∗-SI = (Kg, P∗, V∗) schemes. Both
schemes are specified in terms of a prime-exponent RSA key generator Krsa and a
superlogarithmic challenge length l : N → N such that 2l(k) < e for all e output by
Krsa on input 1k. The prover P and verifier V are initialized with states sk = ((N, e), x)
and pk = ((N, e), X), respectively.

The Guillou-Quisquater scheme. The GQ -SI scheme defined via Figure 3.9
is the standard one considered in the literature. Convertibility is easily seen by
considering the relation R = {(x,X) | xe ≡ X mod N}, relation description

〈R〉 = (N, e), and trapdoor d. Pair sampling involves choosing x
R← Z∗

N and
computingX ← xe mod N . We note that GQ -IBI = cSI-2-IBI(GQ -SI ) is exactly
the IBI scheme as presented by Guillou and Quisquater [GQ89], and GQ -IBS =
cSS-2-IBS(fs-I-2-S(GQ -SI )) is exactly their IBS scheme. We know that GQ -SI is
imp-pa secure assuming RSA is one-way, and imp-aa and imp-ca secure assuming
hardness of the one-more RSA problem [BP02]. Theorem 3.8 says that these
results extend to GQ -IBI . (Also Corollary 3.11 says that GQ -IBS is uf-cma
assuming RSA is one-way, but this was known [DKXY03].)

The Sh and Sh∗ schemes. Shamir [Sha84] introduced the concept of identity-
based cryptography and presented the first IBS scheme, but did not define
associated SI or IBI schemes. He also gave no security proof for his IBS scheme,
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and none has been provided until now.

We surface the SI scheme Sh-SI defined via Figure 3.10. One can check that
Sh-IBS = cSS-2-IBS(fs-I-2-S(Sh-SI )) is exactly Shamir’s IBS scheme [Sha84].
Sh-SI is interesting both historically and technically. It turns out to be a “mirror-
image” of GQ -SI that closely resembles the latter. Convertibility of Sh-SI follows
from the convertibility of GQ -SI since the two schemes have the same key-
generation algorithm. Considering security, the first question to ask is whether
Sh-SI is honest-verifier zero-knowledge (HVZK). While this was obvious for
GQ -SI (as in fact it usually is, if true for an SI scheme), it is not apparent at
first glance for Sh-SI , and one might suspect that the scheme is not HVZK.
However, using a trick involving greatest common divisors and the extended
Euclidean algorithm, we show that Sh-SI is statistical (not perfect) HVZK. We
also show that it is a proof of knowledge and thereby obtain the following:

Theorem 3.16 The Sh-SI is imp-pa secure assuming one-wayness of the un-
derlying RSA key generator Krsa.

Proof: The Sh-SI scheme is statistical honest-verifier zero-knowledge since the
following algorithm simulates communication transcripts using only the public
key:

Algorithm Conv-sim((N, e),X)

c
R← {0, 1}l(k)

Compute a, b ∈ Z such that ac+ be = 1 (via extended Euclidean alg.)

y
R← Z∗

N ; Y ← X−a · ye mod N ; z ← Xb · yc mod N
Return (Y, c, z).

The transcripts generated by Conv-sim are correctly distributed since Y is uni-
formly distributed over Z

∗
N , c is uniformly distributed over {0, 1}l(k) and z is

the unique element of Z
∗
N such that ze ≡ XY c mod N because ze ≡ Xbeyec ≡

Xac+beY c mod N . The second line of the algorithm may fail if gcd(c, e) 6= 1.
However, since e is prime with 2l(k) < e, the only problematic value is c = 0,
which occurs only with negligible probability 2−l(k) when the challenge length
l is super-logarithmic in the security parameter.

The protocol is also a proof of knowledge of x, because from two valid
challenge-response pairs (c1, z1), (c2, z2) for the same commitment Y , one can
extract the secret key x as follows. Use the extended Euclidean algorithm to
compute a, b ∈ Z such that a(c1−c2)+be = 1. Since (z1/z2)

e ≡ Y c1−c2 mod N ,
it holds that Y ≡ Y a(c1−c2)+be ≡ ((z1/z2)

aY b)
e

mod N , so that we can let
y ← (z1/z2)

aY b mod N and compute x as z1y
−c1 mod N . The extraction does

not work if gcd(c1 − c2, e) > 1, but since e is prime, this only occurs when
c1 = c2, which again happens with negligible probability for super-logarithmic
challenge length.
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Corollary 3.11 now implies that Sh-IBS is uf-cma secure under the same as-
sumptions.

However, Sh-SI scheme is trivially insecure under active attacks, since the
cheating verifier can learn the secret key by sending a zero challenge. But this
minor weakness is easily fixed by “removing” the zero challenge. We define in
Figure 3.10 a modified scheme we denote Sh∗-SI . This scheme turns out to
have security attributes analogous to those of GQ -SI in that we can show the
following:

Theorem 3.17 The Sh∗-SI scheme is imp-pa secure under the RSA assump-
tion associated to the underlying RSA key generator Krsa, and imp-aa and
imp-ca secure under the one-more RSA assumption relative to Krsa.

Proof: The imp-pa security of the Sh∗-SI scheme under passive attack fol-
lows from the fact that it is perfect honest-verifier zero-knowledge and a proof
of knowledge of x. Conversations can be simulated by an algorithm similar to
Conv-sim in the proof of Theorem 3.16 but drawing c from {1, . . . , 2l(k)}. Ex-
tracting x is done exactly as in the proof of Theorem 3.16.

As one might expect, the proof under active and concurrent attack is very similar
to the proof of the GQ identification scheme [BP02]. Given imp-ca adversary
A = (CV,CP) for the Sh∗-SI scheme, we construct a one-more RSA adversary
B as follows. On input (N, e), B queries its challenge oracle the first time and
stores the output as X. It then runs CV on input pk = ((N, e),X). When CV
requests to interact with a new prover session s, B queries its challenge oracle for
a fresh target point Ys and returns Ys to CV. When confronted with challenge
cs 6= 0, B uses the inversion oracle to compute zs ← Inv(XY cs

s mod N) and
returns it to CV. At the end of its execution, CV outputs initial state StCP for
the cheating prover CP.

Algorithm B then runs CP in a reset experiment as in Lemma 3.15 to generate
two communication transcripts (Y, c̃1, z̃1) and (Y, c̃2, z̃2) where the challenges
c̃1, c̃2 are uniformly distributed over S1. With probability Pr[res(StCP, pk) = 1]
these will both be accepting transcripts and c̃1 6= c̃2. Moreover, since e is prime
and 2l(k) < e, we can compute a, b ∈ Z such that a(c̃1− c̃2)+be = 1 and compute
x ∈ Z

∗
N such that xe ≡ X mod N as in the proof of Theorem 3.16. Inversions

of all other target points Ys are either computed using the inversion oracle for
unfinished sessions s, or are computed by applying the gcd trick again to get a, b
such that acs+be = 1 and using the fact that ys ≡ yacs+be

s ≡ (zs/x)
aY b mod N .

In summary, B needed one target point and one inversion query for each prover
session, but succeeded in inverting X without the help of the inversion oracle,
so it wins the game whenever the rewinding experiment succeeded. Using the
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Reset Lemma, we have

Advimp-ca
Sh∗-SI ,A

(k) = acc(StCP, pk)

≤ 2−l(k) +
√

res(StCP, pk)

≤ 2−l(k) +
√

Adv1m-rsa
Krsa,B (k). (3.7)

We obtain the usual consequences for the security of Sh∗-IBI = cSI-2-IBI(
Sh∗-SI ) and Sh∗-IBS = cSS-2-IBS(fs-I-2-S(Sh∗-SI )).

The OkRSA scheme. Okamoto [Oka93] presented an RSA-based SI scheme
and a related RSA-based IBI scheme. He proved the former imp-pa and imp-aa
secure assuming factoring is hard, and the proofs extend to establish imp-ca as
well. However, he did not prove the IBI scheme secure, a gap we fill.

The OkRSA-SI scheme defined in Figure 3.11 is the SI scheme mentioned
above. We observe that OkRSA-IBI = cSI-2-IBI(OkRSA-SI ) is exactly Okamoto’s
RSA-based IBI scheme [Oka93]. To show the security of the OkRSA-IBI and
OkRSA-IBS = cSS-2-IBS(fs-I-2-S(OkRSA-SI )) schemes, it suffices to show that
OkRSA-SI is convertible. For this, the relation has description 〈R〉 = (N, e, g),
and contains tuples ((x1, x2),X) ∈ (Ze×Z

∗
N )×Z

∗
N such that X ≡ gx1xe

2 mod N .
The trapdoor is d such that ed ≡ 1 mod ϕ(N). Pair sampling involves choosing
x1, x2 at random and computing X ≡ gx1xe

2.

The Gir scheme. Girault [Gir90] proposed an SI scheme that we have defined in
Figure 3.12 and named Gir -SI . He also proposed a related IBI scheme. (These
schemes are inspired by the Schnorr identification scheme [Sch90] but use a
modulus N = pq where p, q are of the special form p = 2fp′+1 and q = 2fq′+1
such that f, p′, q′, p, q are all primes.) This IBI scheme did not use hash functions,
which lead to an attack and later a fix [SSN98]. The fixed IBI scheme turns out
to be exactly Gir -IBI = cSI-2-IBI(Gir -SI ).

Gir -SI is convertible with relation R = {((P, s),X) | P e ≡ X−1h−s mod N}
described by (N, e, h, f). The trapdoor is d ≡ e−1 mod ϕ(N). Pair sampling
involves choosing P and s at random and computing X as P−eh−s mod N .
However, this does not help here because we found that all schemes in the
family are insecure. In particular, Gir -SI is not even imp-pa secure, and neither
is the fixed IBI scheme Gir -IBI . The identity-based signature scheme Gir -IBS =
cSS-2-IBS(fs-I-2-S(Gir -IBI )) is not uf-cma secure either.

Theorem 3.18 (Insecurity of the Gir Family) The Gir -SI scheme depicted
in Figure 3.12 and the Gir -IBI = cSI-2-IBI(Gir -SI ) scheme [Gir90, SSN98] are
insecure against impersonation under passive, active and concurrent attack. The
Gir -SS = fs-I-2-S(Gir -SI ) and the Gir -IBS = cSS-2-IBS(Gir -SS) schemes are
universally forgeable under known-message attack.
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Algorithm Kg(1k)

(N, e, d)
R← Krsa(1

k) ; g
R← Z

∗
N

x1
R← Ze ; x2

R← Z
∗
N ; X ← g−x1x−e

2 mod N
pk ← ((N, e, g),X) ; sk ← ((N, e, g), (x1, x2))
Return (pk , sk)

Prover P Verifier V

y1
R← Ze ; y2

R← Z
∗
N

Y ← gy1ye
2 mod N Y

-

c
� c

R← {0, 1}l(k)

z1 ← y1 + cx1 mod e
r ← b(y1 + cx1)/ec
z2 ← gry2x

c
2 mod N z1, z2

-

If Y, z2 ∈ Z
∗
N and z1 ∈ Ze

and Y ≡ gz1ze
2X

c mod N
then acc else rej

Figure 3.11: The OkRSA-SI scheme. The scheme is parameterized with a prime-
exponent RSA generator Krsa and a challenge length l : N → N such that 2l(k) < e

for any e output by Krsa(1
k). The prover P and verifier V are initialized with states

sk = ((N, e, g), (x1, x2)) and pk = ((N, e, g), X), respectively.

Proof: We attack only the Gir -IBS scheme, since the insecurity of the SI,
IBI, and SS schemes then follows as a consequence. In the Gir -IBS scheme,
a signature of a user I on a message M under the master public key mpk =
(N, e, h, f) is a tuple (P, Y, z) such that Y ≡ hz(P e ·H1(I))

H2(P‖Y ‖M) mod N ,
where H1 is the random oracle associated to the cSI-2-IBI transform and H2 is
the random oracle associated to the fs-I-2-S transform. The flaw at the heart
of the attack is that in the subgroup generated by g, computing RSA inverses
is easy because the order f of the subgroup is known. Given a valid signature
(P1, Y1, z1) for message M1 and identity I, an adversary can forge I’s signature
for any message M2 as follows. It first computes d′ ← e−1 mod f and g′ ←
hd′

mod N . Because h is of order f , we have g ≡ g′ mod N . It also computes
S′ ← (P e

1 ·H1(I))
d′

mod N such that

S′ ≡
(
H1(I)

−1Se ·H1(I)
)d′

mod N

≡ S mod N.

Then, it chooses s2 from Zf and computes P2 ← P1S
′−1

g′−s2 mod N . Since
P2 ≡ H1(I)

−dg−s2 mod N , the pair (P2, s2) might have been output by the UKg
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Algorithm Kg(1k)

(N, e, d, f)
R← Krsa(1

k)
Choose g ∈ Z

∗
N of order f ; h← ge mod N

s
R← Zf ; S ← g−s mod N

X
R← Z

∗
N ; P ← X−dS mod N

pk ← ((N, e, h, f),X) ; sk ← ((N, e, h, f), (P, s))
Return (pk , sk)

Prover P Verifier V

y
R← Zf

Y ← hy mod N P, Y
-

c
� c

R← {0, 1}l(k)

z ← y + sc mod f z
-

If P, Y ∈ Z
∗
N and z ∈ Zf

and hz(P eX)c ≡ Y mod N
then acc else rej

Figure 3.12: The Gir -SI scheme. The scheme is parameterized with a challenge
length l(k) and an RSA key generator Krsa that returns the modulus N = pq with
p, q of the form p = 2fp′ + 1 and q = 2fq′ + 1 where f, p′, q′, p, q are all primes. The
generator outputs N, e, d as well as f . The prover P and verifier V are initialized with
states sk = ((N, e, h, f), (P, s)) and pk = ((N, e, h, f), X), respectively.

algorithm as part of the user secret key corresponding to identity I. Therefore,
any signature the adversary generates using this pair will be considered valid for
identity I. The adversary now follows the normal signing algorithm to compute
the forgery: it chooses y2 from Zq, sets Y2 ← hy2 mod N , computes z2 ← y2 +
s2H2(P2‖Y2‖M2) mod f . The forgery is (P2, Y2, z2).

It is natural to consider counteracting the above attack by removing f from
the public key. While this might work for the SI scheme, it does not for the
IBI (or IBS) scheme. The reason is that, since f still has to be included in each
user’s secret key, an adversary can easily extract it by corrupting one identity.

We stress that the scheme broken here is not the (perhaps better-known) SI
scheme by Girault based on discrete logarithms [Gir91] that forms the basis of
the GPS identification scheme [PS98, BBB+00] and was accepted as a NESSIE
recommendation [NES03].
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Algorithm Kg(1k)

(G1,G2, q, P, ê)
R← Kpair(1

k)

s
R← Zq ; S ← sP ; U

R← G1 ; V ← sU
pk ← ((G1,G2, q, P, ê, S), U) ; sk ← ((G1,G2, q, P, ê, S), V )
Return (pk , sk)

Prover P Verifier V

y
R← Zq ; Y ← yP Y

-

C
� C

R← G1

Z ← yC + V Z
-

If Y,Z ∈ G1

and ê(Z,P ) = ê(U, S)ê(C, Y )
then acc else rej

Prover P Verifier V

y
R← Zq ; α← ê(P, P )y α

-

c
� c

R← Zq

Z ← yP + cV Z
-

If α ∈ G2 and Z ∈ G1

and ê(Z,P ) = α · ê(U, S)c

then acc else rej

Prover P Verifier V

y
R← Zq ; Y ← yU Y

-

c
� c

R← Zq

Z ← (y + c)V Z
-

If Y,Z ∈ G1

and ê(Z,P ) = ê(Y + cU, S)
then acc else rej

Figure 3.13: SI schemes surfaced from pairing-based IBS schemes. All schemes
use the same key generation algorithm Kg. Presented here are (from top to bottom)
the SOK -SI , Hs-SI and ChCh-SI schemes. The provers P and verifiers V are initialized
with states sk = ((G1, G2, q, P, ê, S), V ) and pk = ((G1, G2, q, P, ê, S), U), respectively.
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3.5.3 Pairing-Based Schemes

Many recent papers propose pairing-based IBS schemes [SOK00, CC03, Yi03,
Pat02, Hes03] (we found the schemes independently published by [CC03] and
[Yi03] actually to be equivalent). Barring [CC03], none of these papers prove
their scheme secure. (Some papers contained proofs in weak models however
[Hes03, Yi03], another claimed but not did not state a proof [Pat02].) However,
the scheme of Hess [Hes03] was proven secure by Dodis et al. [DKXY03].

None of these papers define SI or IBI schemes. We surface SOK -SI [SOK00],
ChCh-SI [CC03, Yi03] and Hs-SI [Hes03], as defined by Figure 3.13. The key gen-
eration algorithm is the same for all these schemes and uses a pairing generator
Kpair as defined in Section 2.3. The ChCh-IBS = cSS-2-IBS(fs-I-2-S(ChCh-SI ))
and Hs-IBS = cSS-2-IBS(fs-I-2-S(Hs-SI )) schemes are exactly the IBS schemes
of the original papers, while SOK -IBS = cSS-2-IBS(fs-I-2-S(SOK -SI )) is slightly
different from the scheme of Sakai et al. [SOK00]. Paterson’s scheme [Pat02]
does not seem to be related to any convertible SI scheme, leaving its security as
an open problem.

We now show that all these pairing-based SI schemes are convertible. Since
they have the same key-generation algorithm, a common argument applies. The
relation is {(V,U) ∈ G1×G1 | ê(V, P ) = ê(U, S)}, described by 〈R〉 = (G1,G2, q,
P, ê, S). The trapdoor is s such that S = sP . Pair sampling is done by choosing

r
R← Zq and computing the pair (rP, rS), and inversion can be done by raising

elements of G1 to the power s−1 mod q.

Theorem 3.19 SOK -SI and ChCh-SI are imp-pa secure assuming that the
computational Diffie-Hellman problem in the group G1 associated to Kpair is
hard.

Proof: We prove security against impersonation under passive attack by show-
ing that all three schemes are honest-verifier zero-knowledge and proofs of knowl-
edge for V . The former can be seen from the conversation simulators given in
Figure 3.14. It is easily verified that their outputs are correctly distributed.
We demonstrate the proof of knowledge property by showing how any cheat-
ing prover CP can be used to extract the prover’s secret V . For the SOK -SI

scheme, the extractor chooses c
R← Zq upon receiving Y from CP, and sends

C ← cP as the challenge. From CP’s response Z, the extractor computes V as
Z − cY . The extractor of the two other schemes runs the cheating prover in a
reset experiment to obtain two responses Z1, Z2 to randomly chosen challenges
c1, c2 for the same commitment Y (or α). If both transcripts are valid, V can
be computed as (c1 − c2)−1(Z1 − Z2). Using the Reset Lemma, we obtain the
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Simulator for SOK -SI :

y
R← Zq ; Y ← yS

z
R← Zq ; Z ← zS

C ← y−1(zP − U)
Return (Y,C,Z)

Simulator for Hs-SI :

Z
R← G1

c
R← Zq

α← ê(Z,P )ê(U, S)−c

Return (α, c, Z)

Simulator for ChCh-SI :

z
R← Zq ; Z ← zS

c
R← Zq

Y ← zP − cU
Return (Y, c, Z)

Figure 3.14: Conversation simulator algorithms for the pairing-based schemes.

following bounds on the advantage of any imp-pa adversary A:

Advimp-pa
SOK -SI ,A(k) ≤ Advcdh

Kpair,B(k)

Advimp-pa
SI ,A (k) ≤ 2−k+1 +

√
Advcdh

Kpair,B(k) for SI ∈ {Hs-SI ,ChCh-SI} .

Corollary 3.11 implies that ChCh-IBS , SOK -IBS and Hs-IBS are uf-cma secure
IBS schemes, but of these only the result about SOK -IBS is new. However, we
are also able to prove the following:

Theorem 3.20 ChCh-SI and Hs-SI are imp-aa and imp-ca secure assuming
that the one-more computational Diffie-Hellman problem in the group G1 asso-
ciated to Kpair is hard.

Proof: The way to construct a one-more CDH algorithm B out of an imp-aa/ca
adversary A = (CV,CP) is actually very similar for the ChCh-SI and Hs-SI
schemes. We present a single construction here and mention the differences as
they occur. When run on input (P, aP ), algorithm B assigns S ← aP , queries
the challenge oracle a first time to get U ← Chall(ε), and runs CV on input
pk = ((G1,G2, P, q, ê, S), U). Each time CV asks for an interaction with a new
prover session i, it queries the challenge oracle to get Yi ← Chall(ε). This
value is returned to the cheating verifier for the ChCh-SI scheme, while αi ←
ê(Yi, S) is returned for the Hs-SI scheme. Upon receiving the challenge ci from
CV, the one-more CDH adversary B uses its CDH oracle to compute Zi ←
Cdh(Yi +ciU) and returns it to CV. The validity of this response can be verified
by observing that for the ChCh-SI scheme it holds that ê(Zi, P ) = ê(a(Yi +
ciU), P ) = ê(Yi + ciU, S), and for the Hs-SI scheme that ê(Zi, P ) = ê(a(Yi +
ciU), P ) = ê(Yi, S)ê(ciU, S) = αi · ê(U, S)ci . When CV outputs the initial state
StCP for the cheating prover, B extracts a value V from CP such that V = aU
by running CP in a reset experiment as in the proof of Theorem 3.19. This is
the solution to B’s first challenge, and it can compute solutions to all other
challenges as Qi ← Zi − ciV . (The solution for Yi in unfinished prover sessions
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can be queried directly from the Cdh oracle.) In summary, if CV interacted with
n different prover sessions, then B succeeded in solving n + 1 challenges using
only n CDH queries, and hence wins the game. Therefore, by Lemma 3.15, the
advantage of an imp-aa/ca A for SI ∈ {ChCh-SI ,Hs-SI} is bounded by

Adv
imp-aa/ca
SI ,A (k) ≤ 2−k+1 +

√
Adv1m-cdh

Kpair,B(k) .

Theorem 3.8 implies that the ChCh-IBI and Hs-IBI schemes are imp-aa
and imp-ca secure assuming that the one-more CDH problem in the group G1

associated to Kpair is hard. Thus, we obtain new, pairing-based IBI schemes
with proofs of security.

SOK -SI and SOK -IBI are insecure under active and concurrent attacks:
upon receiving a commitment Y , an adversary can choose c

R← Zq, submit
C ← cP as the challenge, and compute the prover’s secret key from the response
Z as V ← Z − cY . As indicated above, SOK -IBS , that we prove secure, is
slightly different from the published IBS scheme [SOK00]. It is unclear whether
the latter can be proved secure, so SOK -IBS might be preferable to the original
one. This highlights a benefit of our framework, namely that we can obtain
provable schemes in a systematic way.

3.5.4 A Scheme based on Discrete Logarithms

The Beth t scheme. The Beth t -SI scheme defined in Figure 3.15 was surfaced
from an IBI scheme by Beth [Bet88]. It is parameterized with a discrete log-
arithm group generator Kdlog as defined in Section 2.3.2. The Beth t -IBI =
cSI-2-IBI(Beth t -SI ) scheme is a more efficient version of the IBI scheme actually
presented [Bet88]. In these schemes, the prover proves knowledge of an ElGamal
signature [El 84] of his identity. Beth [Bet88] gives no security proofs, but here
we obtain one for the special case of Beth1 -IBI .

It would be tempting to say that the Beth t -SI scheme is convertible with re-
lation R = {((R, s1, . . . , st), (h1, . . . , ht)) ∈ (G×Z

t
q)×Z

t
q | XR

i R
si ≡ ghi for i =

1 . . . t} described by 〈R〉 = (G, q, g,X1, . . . ,Xt) and with trapdoor information
(x1, . . . , xt) such that gxi ≡ Xi for i = 1 . . . t. In the case that t = 1 (and using
x,X, h as a shorthand notation for x1,X1, h1), pair sampling can be done by
choosing a, b at random from Zq and letting R ← Xagb, s ← a−1R mod q and
h← bs mod q. (This trick is actually related to the existential forgery attack on
textbook-ElGamal signatures [El 84].) However, it is not clear how to sample
the relation for t > 1, the problem being that the same R has to “fit” all Xi.
Thus, while we know that Beth1 -SI is a convertible SI scheme, we do not know
whether the same holds true for Beth t -SI with t > 1.

We were unable to prove the Beth1 -SI scheme under a “clean” mathemati-



68 Identity-Based Identification Schemes

Algorithm Kg(1k)

(G, q, g)
R← Kdlog(1

k)

r
R← Zq ; R← gr

For i = 1 . . . t do

xi
R← Zq ; Xi ← gxi ; hi

R← Zq

Compute si such that Rxi + rsi ≡ hi mod q
pk ← ((G, q, g,X1, . . . Xt), (h1, . . . ht))
sk ← ((G, q, g,X1, . . . Xt), (R, s1, . . . , st))
Return (pk , sk)

Prover P Verifier V

y
R← Zq ; Y ← R−y R, Y

-

c
� c = (c1, . . . , ct)

R←
(
{0, 1}l(k)

)t

z ← y +
∑

i cisi mod q z
-

If R, Y ∈ G and z ∈ Zq

and g
∑

i cihi ≡ RzY
∏

iX
ciR
i

then acc else rej

Figure 3.15: The Beth t-SI scheme. The scheme is parameterized with the discrete-
log group generator Kdlog, a key multiplicity t ≥ 1 and and superlogarithmic challenge
length l : N → N such that 2l(k) < q for all q output by Kdlog(1

k). The prover P

and verifier V are run on initial states sk = ((G, q, g, X1, . . . , Xt), (R, s1 . . . st)) and
pk = ((G, q, g, X1, . . . Xt), (h1 . . . ht)), respectively.

cal assumption, but Theorem 3.21 proves the passive security of Beth1 -SI under
the assumption that the hashed-message ElGamal signature scheme, presented
as ElG-SS in Figure 3.16, is secure under the (very weak) notion of univer-
sal unforgeability under no-message attack in the random oracle model. The
ElG-SS scheme is a close variant of the Modified ElGamal signature scheme
that was proven secure under the discrete logarithm assumption [PS00]. Ble-
ichenbacher [Ble96] demonstrated an attack on the ElG-SS scheme and showed
how to counteract it by carefully choosing the public parameters or by restricting
the values of valid signatures.

Theorem 3.21 Beth1 -SI is imp-pa secure assuming that the ElG-SS scheme
associated to Kdlog is universally unforgeable under no-message attack in the
random oracle model.

Proof: Given an imp-pa adversary A = (CV,CP), we construct a universal

forger F as follows. On input pk = (G, q, g,X), the forger first chooses r
R← Zq,

lets R ← gr and runs CV on input ((G, q, g,X),H(M)). Note that since H
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Algorithm Kg(1k)

(G, q, g)
R← Kdlog(1

k)

x
R← Zq ; X ← gx

pk ← (G, q, g,X) ; sk ← (G, q, g, x)
Return (pk , sk)

Algorithm Sign(sk ,M : H)
Parse sk as (G, q, g, x)

r
R← Zq ; R← gr

Compute s such that
Rx+ rs ≡ H(M) mod q

Return (R, s)

Algorithm Vf(pk ,M, σ : H)
Parse pk as (G, q, g,X)
Parse σ as (R, s)
If XRRs ≡ gH(M)

then return 1 else return 0

Figure 3.16: The ElG-SS scheme. The scheme is parameterized with discrete loga-
rithm group generator Kdlog. The signing and verification algorithms have access to a
random oracle H : {0, 1}∗ → Zq.

is a random oracle, this public key is correctly distributed. It answers CV’s
conversation queries by each time choosing c and z at random from {0, 1}l(k)

and Zq, respectively, computing Y ← gcH(M)R−zX−cR and returning (Y, c, z)
as the transcript. When CV outputs StCP, the forger runs the cheating prover
in a reset experiment as in Lemma 3.15 to get commitment R̃, Y and responses
z1, z2 to challenges c1, c2 chosen at random from {0, 1}l(k). Note that R̃ does not
have to be equal to R used in the simulated transcripts. If the reset experiment
is successful (meaning that both responses are valid and c1 6= c2), the forger
computes s← (c1 − c2)−1(z1 − z2) mod q and outputs σ = (R̃, s) as the forgery
for M . By dividing the two verification equations of the reset experiment, it is
easily seen that this is a valid signature for M . Due to the Reset Lemma, the
imp-pa advantage of A is bounded by

Advimp-pa
Beth1 -SI ,A

(k) ≤ 2−l(k) +
√

Advuuf-nma
ElG-SS ,F(k),

which is a negligible quantity for super-logarithmic functions l(k), thereby con-
cluding the proof.

Theorem 3.8 implies that Beth1 -IBI inherits the above security attributes,
and Corollary 3.11 implies that Beth1 -IBS = cSS-2-IBS(fs-I-2-S(Beth1 -SI )) is
uf-cma secure under the same assumptions. The imp-aa and imp-ca security of
Beth1 -SI remains open, as does the security of Beth t -SI scheme with t > 1.
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Algorithm MKg(1k)

(G, q, g1)
R← Kdlog(1

k)

α
R← Zq ; g2 ← gα

1

x1, x2
R← Zq ; X ← g−x1

1 g−x2
2

mpk ← (G, q, g1, g2,X)
msk ← (G, q, g1, g2, x1, x2)
Return (mpk ,msk)

Algorithm UKg(msk , I : H)
(G, q, g1, g2, x1, x2)← msk

r1, r2
R← Zq ; R← gr1

1 g
r2
2

h← H(R||I)
s1 ← −r1 − hx1 mod q
s2 ← −r2 − hx2 mod q
usk ← (G, q, g1, g2, h, s1, s2)
Return usk

Prover P Verifier V
S ← g−s1

1 g−s2
2

y1, y2
R← Zq ; Y ← gy1

1 gy2

2
h, S, Y

-

c
� c

R← {0, 1}l(k)

z1 ← y1 + cs1 mod q

z2 ← y2 + cs2 mod q z1, z2
-

If h ∈ {0, 1}l(k) and S, Y ∈ G

and z1, z2 ∈ Zq and Y ≡ gz1
1 g

z2
2 S

c

and h = H(XhS||I)
then acc else rej

Figure 3.17: The OkDL-IBI scheme. The scheme is parameterized by discrete-
log group generator Kdlog and superlogarithmic challenge length l : N → N such
that 2l(k) < q for all q output by Kdlog(1

k). The prover P and verifier V are run on
initial states usk = (G, q, g1, g2, h, s1, s2) and (mpk , I) where mpk = (G, q, g1, g2, X),
respectively.

3.6 Exceptions: Schemes needing Direct Proofs

The only IBI scheme we found in the literature that is not based on a convertible
SI scheme is the OkDL-IBI scheme shown in Figure 3.17 [Oka93]. It is based on
discrete logarithms and is similar to the Beth1 -IBI scheme in that a user’s secret
key is a signature on his identity and the identification protocol is a proof of
knowledge of such signature. We prove its security under the discrete logarithm
assumption, a result missing from the original work [Oka93]. We also present a
more natural and slightly more efficient variant of OkDL-IBI that we call the
XDL-IBI scheme, and that just like the OkDL-IBI scheme is not based on a
cSI scheme but can be proven secure directly as an IBI scheme.
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3.6.1 The OkDL-IBI Scheme

Theorem 3.22 The OkDL-IBI scheme is secure against impersonation under
passive, active and concurrent attacks (imp-pa/aa/ca secure) in the random
oracle model if the discrete logarithm problem associated to Kdlog is hard.

Proof: We prove the above theorem by showing that if there exists a poly-
nomial-time impersonator A breaking OkDL-IBI in a concurrent attack using
QInit

A
initialization queries and QH

A
queries to the random oracle, then there

exists an algorithm B solving the discrete logarithm problem associated to Kdlog

such that

Advimp-ca
OkDL-IBI ,A

(k) ≤ c1 ·
√

Advdlog
Kdlog,B(k) + c2 (3.8)

where c1 = 1 +
√

(1 + QH

A
) · 2k−1

2k−1−1

c2 = 2−l(k) +
√

21−k · (1 + QInit

A
+ QH

A
) ·QInit

A
.

A user’s secret in the OkDL-IBI scheme is essentially an optimized2 signature
of the user’s identity under a signature scheme that is commonly known as the
classical Okamoto signature scheme [Oka93], that we refer to as the OkCL-SS
scheme here. This scheme is the fs-I-2-S transform of the OkCL-SI scheme de-
picted in Figure 3.18. (Note that the OkCL-SI and OkCL-SS schemes are not
convertible, so corresponding IBI and IBS schemes are not defined.)

As usual, the proof works by contradiction: given an imp-ca adversary A for
the OkDL-IBI scheme, we construct an algorithm B that is able to compute
discrete logarithms in G. We distinguish between two types of impersonations:
the first reusing previously seen values for h, S in the attack, and the second
creating its own values for h, S. We first show how to transform the former type
into a discrete logarithm algorithm B1 directly. For the second type of imperson-
ation, we take a modular approach by proving it equivalent to breaking the weak
non-malleability (to be introduced shortly hereafter) of the OkCL-SS scheme,
which in turn is shown to be implied by the security of OkCL-SI under passive
attack, which finally is known to hold under the discrete logarithm assumption.
The cascade of algorithms in the reduction is illustrated in Figure 3.19.

We start off with the description of the discrete logarithm algorithm B1.
Given an imp-ca adversary A = (CV,CP) and input (G, q, g1, g2), it computes
logg1

g2 as follows. It chooses x1, x2 at random from Zq, computesX ← g−x1
1 g−x2

2

and runs CV on input mpk = (G, q, g1, g2,X). It answers all CV’s oracle queries
by running the real OkDL-IBI protocol algorithms, which it can since it knows

2Instead of Y ‖z1‖z2, often the equivalent but more compact representation h‖z1‖z2 with
h = H(Y ‖M) is used as the signature, since Y can be recomputed as gz1

1 gz2
2 Xh. It is this

representation that is used as the user secret key in OkDL-IBI .
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Algorithm Kg(1k)

(G, q, g1)
R← Kdlog(1

k)

α
R← Zq ; g2 ← gα

1 ; x1, x2
R← Zq ; X ← g−x1

1 g−x2
2

pk ← ((G, q, g1, g2),X) ; sk ← ((G, q, g1, g2), (x1, x2))
Return (pk , sk)

Prover P Verifier V

y1, y2
R← Zq ; Y ← gy1

1 gy2

2
Y

-

c
� c

R← {0, 1}l(k)

z1 ← y1 + cx1 mod q

z2 ← y2 + cx2 mod q z1, z2
-

If Y ∈ G and z1, z2 ∈ Zq

and Y ≡ gz1
1 g

z2
2 X

c

then acc else rej

Figure 3.18: The OkCL-SI scheme. The scheme is parameterized by discrete-log
group generator Kdlog and super-logarithmic challenge length l : N → N such that
2l(k) < q for all q output by Kdlog(1

k). The prover P and verifier V are run on
initial states sk = ((G, q, g1, g2), (x1, x2)) and pk = ((G, q, g1, g2), X), respectively.
The scheme is canonical but not convertible, so it can be transformed into the
OkCL-SS = fs-I-2-S(OkCL-SI ) scheme, but no corresponding IBI or IBS schemes are
defined.

the master secrets x1, x2, storing the user secret key it generates for each iden-
tity I as (hI , s1,I , s2,I). At the end of its execution, CV outputs the identity
J that will be attacked and state information St

CP
for the cheating prover.

For the remainder of this paragraph, we use h̃ as shorthand notation for hJ ,
s̃1 for s1,J , s̃2 for s2,J and S̃ for g−s̃1

1 g−s̃2
2 , respectively. Consider a modi-

fied verifier algorithm V
′

that only accepts conversation (h, S, Y, c, z1, z2) if
V would accept it and (h, S) = (h̃, S̃). Algorithm B1 runs CP in a reset ex-

periment against this modified verifier V
′
, again simulating oracles by run-

ning the real OkDL-IBI algorithms, to generate two accepting conversations
(h, S, Y, c1, z11, z12), (h, S, Y, c2, z21, z22) for randomly chosen challenges c1, c2.
From these conversations, it is possible to extract s1, s2 such that S ≡ g−s1

1 g−s2
2

≡ S̃ as si ← (c1 − c2)−1(z1i − z2i) mod q. The combined views of CV and CP
are independent of B1’s choice for (s̃1, s̃2), so with probability (q−1)/q we have
(s1, s2) 6= (s̃1, s̃2) and the discrete logarithm of g2 relative to g1 can be computed
as −(s1 − s̃1)(s2 − s̃2)−1 mod q.

The simulation of CV’s and CP’s environment is obviously perfect, since
the same algorithms were used as in the real game. Let E be the event that
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A : imp-ca of OkDL-IBI
↙ ↘

B1: dlog of Kdlog

F: wnm-cma of OkCL-SS
↓

A: imp-pa of OkCL-SI
↓

B2: dlog of Kdlog

↘ ↙
B: dlog of Kdlog

Figure 3.19: Cascade of reductions in the proof of Theorem 3.22. An
arrow going from label “X1: Y1 of Z1” to label “X2: Y2 of Z2” means that the
existence of a polynomial-time algorithm X1 attacking scheme Z1 under security
notion Y1 implies the existence of an algorithm X2 breaking scheme Z2 under
notion Y2.

(h̃, S̃) = (h, S), and let E be the complementary event. Let acc′(St
CP
, (mpk , J))

be the probability that V
′
accepts on input (mpk , J) after interacting with CP

initiated on St
CP

, and let res′(St
CP
, (mpk , J) be the probability that the reset

experiment confronting CP with V
′

as in Lemma 3.15 returns 1. We have the
following expression for the advantage of B1 in computing discrete logarithms:

Advdlog
Kdlog,B1

(k) ≥ res′(St
CP
, (mpk , J)) · Pr[E]

≥
(
acc′(St

CP
, (mpk , J))− 2−l(k)

)2 · Pr[E]

This concludes the description of algorithm B1.

We now focus on how the second type of attack that creates new values
(h, S) for its impersonation can be transformed into a discrete logarithm al-
gorithm. The OkCL-SI scheme is known to be secure against impersonation
under concurrent attack under the discrete logarithm assumption, and hence
by Theorem 3.4 the OkCL-SS scheme is unforgeable under chosen-message at-
tack under the same assumption in the random oracle model. This, however,
is not sufficient for our purposes, since a forger F will only be able to ex-
tract a second signature (h, s1, s2) on the previously signed message J . Inspired
by the notion of non-malleability [SPMLS02], we say that a signature scheme
SS = fs-I-2-S(SI ) = (Kg,Sign,Vf) associated to a canonical SI scheme SI is
weakly non-malleable under chosen-message attack if no polynomial-time algo-
rithm F has non-negligible advantage in winning the following game:

Experiment Expwnm-cma
SS ,F (k)

(pk , sk)
R← Kg(1k)
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(M,Cmt‖Rsp)← F(pk : Sign),

answering queries Sign(Mi) as Cmt i‖Rspi
R← Sign(sk ,Mi)

If Vf(pk ,M,Cmt‖Rsp) = 1 and 6 ∃ i such that M = Mi and Cmt = Cmt i

then return 1 else return 0.

Before showing that the OkCL-SS scheme is weakly non-malleable, we first
explain how the second type of impersonation is transformed into an algorithm
F breaking the weak non-malleability of OkCL-SS .

Given an imp-ca adversary A = (CV,CP), input pk = (G, q, g1, g2,X) and
access to a signing oracle Sign(·) and random oracle H(·), F proceeds as follows.
It runs CV on input mpk = (G, q, g1, g2,X), answering its oracle queries as:

– Init(I): by calling and storing (hI , s1,I , s2,I)← Sign(I) and returning 1

– Prov(I, s,M): by running the real prover algorithm (which it can because
it knows the user secret keys of all identities)

– Corr(I): by returning (hI , s1,I , s2,I)

until CV outputs (St
CP
, J). We use the same shorthand notations h̃, s̃1, s̃2, S

here as in the description of the discrete logarithm algorithm B1 above. Define

a modified verifier algorithm V
′′

that accepts only if V accepts and moreover

(h̃, S̃) 6= (h, S). Algorithm F runs CP in a reset experiment against V
′′
, and

extracts s1, s2 such that S ≡ g−s1
1 g−s2

2 exactly as done in the B1 algorithm.
Since h = H(XhS‖J) and (h̃, S̃) 6= (h, S), the tuple (h,−s1 mod q,−s2 mod q)
is a valid signature on message J different from the one output by the signing
oracle, thereby breaking the weak non-malleability.

It is easy to see that the simulation of the environment for CV,CP is perfect.
Let acc′′(St

CP
, (mpk , J)) and res′′(St

CP
, (mpk , J)) be as defined in the Reset

Lemma when CP is confronted with verifier V
′′
. The advantage of F in breaking

the weak non-malleability of the OkCL-SS scheme is bounded by

Advwnm-cma
OkCL-SS ,F(k) ≥ res′′(St

CP
), (mpk , J)) · Pr[E]

≥
(
acc′′(St

CP
), (mpk , J))− 2−l(k)

)2 · Pr[E],

and the running time and number of oracle queries of F are given by

TF = O(T
A
), QSign

F = QInit

A
, QH

F = QH

A
. (3.9)

Let acc(St
CP
, (mpk , J)) be the probability that verifier V accepts after in-

teracting with CP. Observe that in event E, verifier V
′
is equivalent to V, and

likewise in event E, verifier V
′′

is equivalent to V, so by combining the equations
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for the advantages of B and F, we can upper bound the advantage of A as

Advimp-ca
OkDL-IBI ,A

(k) = acc(St
CP
, (mpk , J))

= acc′(St
CP
, (mpk , J)) · Pr[E]

+ acc′′(St
CP
, (mpk , J)) · Pr[E]

≤
√

Advdlog
Kdlog,B1

(k) · Pr[E] +
√

Advwnm-cma
OkCL-SS ,F(k) · Pr[E]

+ 2−l(k) · (Pr[E] + Pr[E])

≤
√

Advdlog
Kdlog,B1

(k) +
√

Advwnm-cma
OkCL-SS ,F(k) + 2−l(k). (3.10)

At this point, we have shown that in order to break the OkDL-IBI scheme,
one has to be able to either compute discrete logarithms, or break the weak non-
malleability of OkCL-SS . We now proceed to prove that the latter is equivalent
to computing discrete logarithms as well.

Lemma 3.23 Let SI be a non-trivial canonical SI scheme with commitments
drawn from CmtSet, and let SS = fs-I-2-S(SI ) as per Construction 3.3. If SI
is secure against impersonation under passive attack, then SS is weakly non-
malleable under chosen-message attack in the random oracle model. Moreover,
if F is an algorithm breaking the weak non-malleability of SS using QSign

F
sign-

oracle queries and QH
F

queries to the random oracle, then there exists a passive
impersonator A attacking SI such that

Advwnm-cma
SS ,F (k) ≤ (1+QH

F )·Advimp-pa
SI ,A (k)+

(1 + QH
F

+ QSign
F

) ·QSign
F

|CmtSet| (3.11)

with TA = O(TF) and QConv
A

= QSign
F

.

Proof: The description of algorithm A is identical to the impersonator de-
scribed in the proof of Lemma 3.5 of Abdalla et al. [AABN02] (of which our
Theorem 3.4 is a special case). In a nutshell, A uses the forger F as a subroutine
to impersonate itself as a prover to an honest verifier V as follows. Algorithm
A uses its conversation oracle to reply to F’s signing and hash queries, except
for one hash query H(Cmt‖M) that it guesses to be the “crucial” query that F
will use later in its forgery. When this query occurs, A sends Cmt as the first
move of its identification to V, and returns the challenge it received from V as
the response to F’s hash query. If at the end F indeed outputs a valid forgery
Cmt‖Rsp for message M , then A successfully completes the identification pro-
tocol by sending Rsp as the response to V.

It is important that when the crucial hash query occurs, A is still free to
program the value that will be returned to F. We can assume without loss of
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generality that F never queries the hash oracle on the same argument twice,
but the hash value might also have been fixed by a previous signature query
for message M . At this point in the proof, Abdalla et al. [AABN02] exploit the
fact that F is not allowed to make such signature query if it later wants to forge
a signature on M . Here, we observe here that even if F retrieved a signature
Cmt ′‖Rsp′ for message M from the signing oracle before, then the value of
H(Cmt‖M) is still undecided as long as Cmt 6= Cmt ′, and this is exactly what
is enforced by our definition of weak non-malleability. The rest of the analysis
is the same as that of Abdalla et al. [AABN02], resulting in an almost identical
advantage equation.

Lemma 3.24 The OkCL-SI standard identification scheme associated to Kdlog

as depicted in Figure 3.18 is secure against forgery under passive attack if the
discrete logarithm problem associated to Kdlog is hard. Moreover, if A is a
polynomial-time impersonator for OkCL-SI under passive attack, then there
exists a polynomial-time algorithm B2 for computing discrete logarithms such
that

Advimp-pa
OkCL-SI ,A

(k) ≤ 2k−1

2k−1 − 1
·Advdlog

Kdlog,B2
(k).

Proof: The description of algorithm B2 is well-known [Oka93], so we restrict
ourselves to proving Equation (3.24) here. The only time that algorithm B2 fails
while A succeeded is when the representation that B2 extracts from A is exactly
the one it already knew. Since there are q possible choices for B2’s representation
and A’s view is independent of this choice, the probability for this to happen is
only 1/q. Because the output of Kdlog(1

k) is such that 2k−1 ≤ q < 2k, it follows
that

Advdlog
Kdlog,B2

(k) ≥
(

1− 1

q

)
·Advimp-pa

OkCL-SI ,A
(k)

≥
(

1− 1

2k−1

)
·Advimp-pa

OkCL-SI ,A
(k)

from which Equation (3.24) follows.

Combining Equations 3.9, 3.10, 3.11 and 3.24 gives

Advimp-ca
OkDL-IBI ,A

(k) ≤
√

Advdlog
Kdlog,B1

(k) + 2−l(k)

+

√

(1 + QH

A
) · 2k−1

2k−1 − 1
·Advdlog

Kdlog,B2
(k) +

(1 + QH

A
+ QInit

A
) ·QH

A

2k−1
. (3.12)
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Now consider discrete logarithm algorithm B that, on input (G, q, g1, g2), runs B1

on the same input if Advdlog
Kdlog,B1

(|q|) ≥ Advdlog
Kdlog,B2

(|q|), and runs B2 otherwise.
Then for all k ∈ N we have

Advdlog
Kdlog,B(k) = max

(
Advdlog

Kdlog,B1
(k), Advdlog

Kdlog,B2
(k)

)
.

Substituting this in Equation (3.12) and using the fact that
√
x+ y ≤ √x+

√
y

for all positive reals x, y yields Equation (3.8), as required. This concludes the
proof of Theorem 3.22.

As already noted in Section 3.4.2, the security of the OkDL-IBS scheme is not
implied by Corollary 3.11 since the corresponding SI scheme is not convertible.
The extended fs-I-2-S transform however does convert OkDL-IBI into an IBS
scheme that is uf-cma secure in the random oracle model under the discrete log-
arithm assumption. The proof of the following theorem is a simple combination
of Theorems 3.22 and 3.14.

Theorem 3.25 The OkDL-IBS = efs-IBI-2-IBS(OkDL-IBI ) as per Figure 3.17
and Construction 3.13 is unforgeable under chosen-message attack in the ran-
dom oracle model if the discrete logarithm problem associated to Kdlog is hard.

3.6.2 The XDL-IBI Scheme

We introduce a new IBI scheme called XDL-IBI that can be viewed as the single-
generator variant of the OkDL-IBI scheme. We present it in Figure 3.20. It is
provably secure as an IBI scheme yet is not the transformation of a convertible
SI scheme. Just like the OkDL scheme, the uf-cma security of fs-I-2-S(XDL-IBI )
is not implied by Corollary 3.11, yet a secure IBS scheme can be constructed
using the extended efs-IBI-2-IBS transformation.

Theorem 3.26 The XDL-IBI scheme is secure against impersonation under
passive attack (imp-pa secure) in the random oracle model if the discrete loga-
rithm problem associated to Kdlog is hard.

Proof: We prove the theorem by showing that if there exists a polynomial-time
impersonator A breaking XDL-IBI in a passive attack using QInit

A
initialization

queries and QH

A
queries to the random oracle, then there exists an algorithm B
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Algorithm MKg(1k)

(G, q, g)
R← Kdlog(1

k)

x
R← Zq ; X ← gx

mpk ← (G, q, g,X)
msk ← (G, q, g, x)
Return (mpk ,msk)

Algorithm UKg(msk , I : H)
(G, q, g, x)← msk

r
R← Zq ; R← gr

h← H(R||I) ; s← r + hx mod q
usk ← (G, q, g, h, s)
Return usk

Prover P Verifier V
S ← gs

y
R← Zq ; Y ← gy h, S, Y

-

c
� c

R← {0, 1}l(k)

z ← y + cs mod q z
-

If h ∈ {0, 1}l(k) and S, Y ∈ G

and z ∈ Zq and gz ≡ Y Sc

and h = H(SX−h||I)
then acc else rej

Figure 3.20: The XDL-IBI scheme. The scheme is parameterized by discrete-log
group generator Kdlog and superlogarithmic challenge length l : N → N such that
2l(k) < q for all q output by Kdlog(1

k). The prover P and verifier V are run on initial
states usk = (G, q, g, h, s) and (mpk , I) where mpk = (G, q, g, X), respectively.

solving the discrete logarithm problem associated to Kdlog such that

Advimp-pa

XDL-IBI ,A
(k) ≤ c1 · 4

√
Advdlog

Kdlog,B(k) + c2 (3.13)

where c1 =
√

(1 + QH

A
+ QInit

A
)

c2 = 2−l(k) +

√

(1 + QH

A
) · 2−l(k) +

(1 + QH

A
+ QInit

A
) ·QInit

A

2k−1
.

Similarly to the proof of Theorem 3.22, we prove the theorem by transform-
ing any imp-pa adversary A = (CV,CP) into a discrete logarithm algorithm
B1 and an algorithm F breaking the weak non-malleability of the Schnorr -SS =
fs-I-2-S(Schnorr -SI ) signature scheme [Sch90] obtained by applying latter algo-
rithm is a rather straightforward adaptation of algorithm F in the proof of
Theorem 3.22, the former needs a little more explanation.

On input (G, q, g1, g2), algorithm B1 chooses x
R← Zq, computes X ← gx

1

and runs CV on input (G, q, g1,X). B1 also chooses qguess
R← {1, . . . ,QInit

CV
} and

hopes that the identity Iguess initialized in the qguess-th Init query will be the
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Algorithm Kg(1k)

(G, q, g)
R← Kdlog(1

k)

x
R← Zq ; X ← gx

pk ← (G, q, g,X)
sk ← (G, q, g, x)
Return (pk , sk)

Prover P Verifier V

y
R← Zq

Y ← gy Y
-

c
� c

R← {0, 1}l(k)

z ← y + cx mod q z
-

If Y ∈ G

and z ∈ Zq

and gz ≡ Y Xc

then acc else rej

Figure 3.21: The Schnorr -SI scheme. The scheme is parameterized by discrete-log
group generator Kdlog and super-logarithmic challenge length l : N → N such that
2l(k) < q for all q output by Kdlog(1

k). The prover P and verifier V are run on initial
states sk = (G, q, g, x) and pk = (G, q, g, X), respectively.

one under attack in the second phase of the game. All Init(·), Conv(·) and
Corr(·) oracle queries are simulated using the real protocol algorithms, except

for queries involving identity Iguess. When Iguess is initialized, B1 chooses h̃
R←

{0, 1}l(k), lets S̃ ← g2 and computes R̃← S̃X−h̃. Because until now CV’s view is
independent of R̃, with overwhelming probability the random oracle H(·) will not
have been queried on value R̃‖Iguess before, so that B1 can set H(R̃‖Iguess) = h̃.

Conversations for Iguess are generated by choosing c
R← {0, 1}l(k), z

R← Zq,

computing Y ← gz
1 S̃

−c and returning conversation (h̃, S̃, Y, c, z). In the second
stage of the game, CP is run in a reset experiment to generate two accepting

conversations (h, S, Y, c1, z1), (h, S, Y, c2, z2) against a modified verifier V
′
that

only accepts if V does and (h, S) = (h̃, S̃). The discrete logarithm of g2 with
respect to g1 is then computed as (c1 − c2)−1(z1 − z2) mod q.

By an analysis similar to that in the proof of Theorem 3.22, the imp-pa
advantage of A can be bounded by

Advimp-pa

XDL-IBI ,A
(k) ≤

√
QInit

CV
·Advdlog

Kdlog,B1
(k) +

√
Advwnm-cma

Schnorr-SS ,F(k) + 2−l(k),

where the second term can be reduced further through Lemma 3.23 and

Advimp-pa
Schnorr-SI ,(

k) ≤
√

Advdlog
Kdlog,B2

(k) + 2−l(k)

to yield Equation (3.13) as required. Note that the fourth root in Equation (3.13)
is induced by the reset experiment that, unlike the OkCL-SI , is needed in the
reduction of computing discrete logarithms to breaking the imp-pa security of
the Schnorr -SI scheme.
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The following theorem then follows easily from Theorem 3.14.

Theorem 3.27 The XDL-IBS = efs-IBI-2-IBS(XDL-IBS) scheme as defined by
Figure 3.20 and Construction 3.13 is unforgeable under chosen-message attack
in the random oracle model if the discrete logarithm problem associated to Kdlog

is hard.

It is unknown if the XDL-IBI is also secure against impersonation under active
and concurrent attacks under the plain discrete logarithm assumption. A proof
does exist however under the stronger one-more discrete logarithm assumption.

Theorem 3.28 The XDL-IBI scheme is secure against impersonation under
concurrent attacks (imp-ca) in the random oracle model if the one-more discrete
logarithm problem associated to Kdlog is hard.

Proof: We will show how to, given a polynomial-time impersonator A breaking
XDL-IBI under concurrent attack, build an algorithm B solving the one-more
discrete logarithm problem associated to Kdlog such that

Advimp-pa

XDL-IBI ,A
(k) ≤ c1 · 4

√
Adv1m-dlog

Kdlog,B (k) + c2 (3.14)

where c1 = 1 +
√

(1 + QH

A
)

c2 = 2−l(k) +

√

(1 + QH

A
) · 2−l(k) +

(1 + QH

A
+ QInit

A
) ·QInit

A

2k−1

The one-more discrete logarithm problem associated to Kdlog is to, given (G, g, q)
and access to challenge oracle Chall(·) and discrete logarithm oracle DLog(·),
output the discrete logarithm of all target points received from the Chall oracle
using strictly less DLog queries.

We use the same approach once again by reducing an imp-ca adversary
A = (CV,CP) into a one-more discrete logarithm algorithm B1 and an algo-
rithm F breaking the weak non-malleability of Schnorr -SS signatures. The latter
algorithm is identical to that in the proof of Theorem 3.26, but using the user
secret keys to simulate interactive prover sessions instead of conversations.

Algorithm B1 uses the challenge oracle to produce values SI for all iden-
tities I initialized by A and simulates interactive prover sessions by retriev-
ing YI,i ← Chall(ε) and computing the response for challenge cI,i as zI,i ←
DLog(YI,iS

cI,i

I ). When A announces to break identity J and proceeds to the
second phase of the game, B1 runs a reset experiment to extract the discrete
logarithm s̃ of S̃ = SJ and uses it to compute discrete logarithms of all values
YJ,i as yJ,i ← zJ,i− s̃cJ,i mod q. For all other initialized identities I 6= J , B1 asks



3.7 Conclusion 81

for the discrete logarithm sI ← DLog(SI) itself and computes the discrete log-
arithms yI,i ← zI,i − sIcI,i mod q. Let n be the number of identities initialized
by A, and let nI be the number of prover sessions initiated for identity I. Then
for each identity I, B1 calculated the discrete logarithm of nI + 1 target points
(all YI,i and SI) using nI + 1 queries to the DLog oracle (one for each prover
session, and an additional one at the end of the game), except for J where the
discrete logarithms of nJ +1 target points were computed using only nJ queries
to the DLog oracle. So in total, B1 saved one DLog query and wins the game.

The advantage of an imp-ca adversary A is bounded by

Advimp-ca
XDL-IBI ,A

(k) ≤
√

Adv1m-dlog
Kdlog,B1

(k) +
√

Advwnm-cma
Schnorr-SS ,F(k) + 2−l(k)

which by similar techniques as those used in the proof of Theorem 3.26 yields
Equation (3.14) as desired.

3.7 Conclusion

In this chapter, we provided security proofs for existing and new identity-based
identification and signatures schemes. We first extended the notions of secu-
rity against impersonation under passive, active and concurrent attack for SI
schemes to the identity-based setting, thereby filling a somewhat surprising gap
viewing the large number of identity-based identification schemes proposed in
the literature [FS86, GQ89, Oka93, Gir90, Bet88].

We then presented a framework of existing and new security-preserving
transformations between (certain classes of) SI, SS, IBI and IBS schemes. The
framework reduces proving security of IBI and IBS schemes to proving an under-
lying SI scheme, which is a considerably easier task. We applied the framework
to 13 schemes proposed in the literature, thereby surfacing new related schemes
and providing security proofs (or in one instance attacks) for SI schemes that
were not analyzed before. Not only did our framework prove to be a valuable
tool in proving the security of IBI and IBS schemes, but we also believe that it
provides insight in now such schemes are constructed.

Finally, we discussed two exceptional IBI schemes that do not fall under our
framework, but that we were able to prove secure as IBI schemes directly. The
results of this chapter were published at EUROCRYPT 2004 [1].
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Chapter 4

Transitive Signatures

4.1 Introduction and Main Contributions

We present novel realizations of the transitive signature (TS) primitive intro-
duced by Micali and Rivest [MR02b], and also provide an answer to an open
question they raise regarding the security of an RSA based scheme.

4.1.1 Background

The concept. The context envisioned by Micali and Rivest [MR02b] is that of
dynamically building an authenticated graph, edge by edge. The signer, having
secret key tsk and public key tpk , can at any time pick a pair i, j of nodes
and create a signature of {i, j}, thereby adding edge {i, j} to the graph. A
composability property is required: given a signature of an edge {i, j} and a
signature of an edge {j, k}, anyone in possession of the public key can create
a signature of the edge {i, k}. Security asks that this limited class of forgeries
be the only possible ones. (I.e., without tsk , it should be hard to create a valid
signature of edge {i, j} unless i, j are connected by a path whose edges have
been explicitly authenticated by the signer.) Thus the authenticated graph at
any point is the transitive closure of the graph formed by the edges explicitly
authenticated by the signer, whence the name of the concept.

Applications suggested by Micali and Rivest [MR02b] include military chains-
of-command, where nodes represent military personnel and a directed edge from
i to j represents that i controls j, and administrative domains, where nodes rep-
resent machines and an undirected edge between i and j means that i and j
are in the same domain. It seems that a truly compelling application, however,
remains to be found. While such applications are more likely to be found for
directed than for undirected graphs, (non-trivial) transitive signature schemes

83
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for directed graphs appear to be much harder to construct: no schemes have
been proposed so far, and following our work Hohenberger [Hoh03] provided ev-
idence that either a new algebraic structure or a completely different approach
is needed to do so. Our work focuses on undirected transitive signatures, and so
from here on all graphs are assumed to be undirected.

Realizing the concept. A transitive signature scheme can be trivially re-
alized by accepting, as a valid signature of {i, j}, any chain of signatures that
authenticates a sequence of edges forming a path from i to j. Two issues lead
[MR02b] to exclude this: the growth in signature size, and the loss of privacy in-
curred by having signatures carry information about their history. The main re-
sult of Micali and Rivest [MR02b] is a (non-trivial) transitive signature scheme,
here denoted DL-TS , that is proven to be (transitively) unforgeable under adap-
tive chosen-message attack (see Section 4.2 for formal definitions) assuming that
the discrete logarithm problem is hard in an underlying prime-order group and
assuming security of an underlying standard signature scheme. They also present
a natural RSA-based transitive signature scheme, here denoted RSA-TS , but
point out that even though it seems secure, and a proof of transitive unforge-
ability under non-adaptive chosen-message attacks exists, there is no known
proof of transitive unforgeability under adaptive chosen-message attacks. They
thereby highlight the fact that in this domain, adaptive attacks might be harder
to provably protect against than non-adaptive ones.

This work. In summary, prior to our work transitive signatures (transitively
unforgeable under adaptive chosen-message attacks) had just a single realiza-
tion, namely the DL-TS scheme. It is standard practice in cryptography to
seek new and alternative realizations of primitives of potential interest, both
to provide firmer theoretical foundations for the existence of the primitive by
basing it on alternative conjectured hard problems and to obtain performance
improvements. In this chapter, we present new schemes that accomplish both of
these objectives, and also provides an answer to the question about the RSA-TS
scheme.

The node certification technique. It is worth outlining the node certifica-
tion based technique introduced by the DL-TS scheme. The signer’s keys include
those of a standard digital signature scheme, and the public key includes ad-
ditional items. (In the DL-TS scheme, this is a group G of prime order q and
a pair of generators of G.) The signer associates to each node i in the current
graph a node certificate consisting of a public label L(i) and a signature on the
concatenation of i and L(i) under the standard scheme. The signature of an
edge contains the certificates of its endpoints plus an edge label δ. Verification
of an edge signature involves relating the edge label to the public labels of its
endpoints as provided in the node certificates and verifying the standard signa-
tures in the node certificates. Composition involves algebraic manipulation of
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Scheme Signing cost Verification cost Composition cost Signature size

DL-TS 2 stand. sigs 2 stand. verifs 2 adds in Zq 2 stand. sigs 4416 bits (SDL)
2 exp. in G 1 exp. in G 2 points in G 2708 bits (EC)

2 points in Zq

DL1m-TS 2 stand. sigs 2 stand. verifs 1 add in Zq 2 stand. sigs 4256 bits (SDL)
1 exp. in G 1 exp. in G 2 points in G 2548 bits (EC)

1 point in Zq

RSA-TS 2 stand. sigs 2 stand. verifs O(|N |2) ops 2 stand. sigs 5120 bits
2 RSA encs 1 RSA enc. 3 points in Z

∗
N

Fact -TS 2 stand. sigs 2 stand. verifs O(|N |2) ops 2 stand. sigs 5120 bits
O(|N |2) ops O(|N |2) ops 3 points in Z

∗
N

Gap-TS 2 stand. sigs 2 stand. verifs O(|N |2) ops 2 stand. sigs 2558 bits

2 exp. in Ĝ 1 Sddh 3 points in Ĝ

RSAH -TS 1 RSA dec. 1 RSA enc. O(|N |2) ops 1 point in Z
∗
N 1024 bits

FactH -TS 2 sq. roots in Z
∗
N O(|N |2) ops O(|N |2) ops 1 point in Z

∗
N 1024 bits

GapH -TS 1 exp. in Ĝ 1 Sddh O(|N |2) ops 1 point in Ĝ 170 bits

Figure 4.1: Cost comparisons amongst transitive signature schemes. The word “stand.” refers to operations of the underlying
standard signature scheme, which are eliminated for RSAH -TS , FactH -TS and GapH -TS . G denotes the group of prime order q

used in DL-TS and DL1m-TS , and N denotes a modulus product of two primes as used in the RSA and factoring-based schemes.
Ĝ is a Gap Diffie-Hellman group and Sddh is an execution of the decision Diffie-Hellman algorithm in Ĝ. Abbreviations used are:
“exp.” for an exponentiation in the group; “RSA enc.” for an RSA encryption; “RSA dec.” for an RSA decryption performed
given the decryption exponent; “sq. root” for a square root modulo N performed using the prime factors of N ; and “ops” for
the number of elementary bit operations in big-O notation. The final column gives approximate total signature lengths using
1024-bit RSA as standard signature scheme and with separate indications for subgroup discrete logarithm groups (SDL) and
elliptic curve groups (EC).
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edge labels.
The technique is useful, but brings an associated cost. Producing a signature

for an edge can involve computing two normal signatures. The length of an edge
signature, containing two node certificates each including a standard signature,
can be large even if the edge labels are small.

4.1.2 Transitive Signatures based on RSA

This scheme, briefly mentioned by Micali and Rivest [MR02b], employs the node
certification technique. The signer has keys for a standard signature scheme. Its
public key additionally includes an RSA modulus N and encryption exponent
e, while its secret key includes the corresponding decryption exponent d. The
public label of a node i is a point L(i) ∈ Z

∗
N , and the edge label of edge {i, j}

is L(i)dL(j)−d mod N assuming i < j. Composition involves multiplying edge
labels modulo N . One can prove that RSA-TS is transitively unforgeable under
non-adaptive chosen-message attacks assuming the one-wayness of RSA and
the security of the underlying standard signature scheme. No adaptive chosen-
message attack that succeeds in forgery has been found, but neither has it been
proven that RSA-TS is transitively unforgeable under adaptive chosen-message
attack.

This situation (namely a scheme that appears to resist both attack and
proof) is not uncommon in cryptography, and we suggest that it is a mani-
festation of the fact that the security of the scheme is relying on properties
possessed by RSA but going beyond those captured by the assumption that
RSA is one-way. Accordingly we seek an alternative, stronger assumption upon
which a proof of security can be based.

We prove that RSA-TS is transitively unforgeable under adaptive chosen-
message attacks under the assumption that the one-more RSA problem is hard
(see Section 2.3.1) and that the standard signature scheme is secure.

4.1.3 New Transitive Signature Schemes

The Fact -TS scheme. After seeing the RSA-TS scheme, one might wonder
whether there exists a transitive signature scheme that is provably secure (tran-
sitively unforgeable under adaptive chosen-message attack) under the standard
one-wayness of RSA. We answer this question in a positive way by presenting
the Fact -TS scheme that is provably secure under the (even weaker) factoring
assumption.

In our Fact -TS scheme, the signer has keys for a standard signature scheme,
and its public key additionally includes a modulus N that is the product of two
large primes. The public label of a node i is a quadratic residue L(i) ∈ Z

∗
N ,

and an edge label of edge {i, j} is a square root of L(i)L(j)−1 mod N assum-
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ing i < j. Composition involves multiplying edge labels modulo N . We prove
that Fact -TS is transitively unforgeable under adaptive chosen-message attack,
assuming the hardness of factoring the underlying modulus, and assuming se-
curity of the underlying standard signature scheme. The delicate part of this
proof is an information-theoretic lemma showing that, even under an adaptive
chosen-message attack, for any {i, j} not in the transitive closure of the current
graph, an adversary has zero advantage in determining which of the square roots
of L(i)L(j)−1 is held by the signer.

One might wonder why proofs under standard assumptions exist for DL-TS
and Fact -TS but remain elusive for RSA-TS in spite of the obvious similarities
between these schemes. The proofs for DL-TS and Fact -TS exploit the fact that
there are multiple valid edge labels for any given edge in the graph, and that
finding two different edge labels implies solving the underlying hard problem.
With RSA-TS , the edge label is uniquely determined by the two node certificates,
and this technique fails.

With regard to costs, we are interested in the computational cost of signing
an edge (in the worst case that both endpoints of the edge are not in the current
graph); the computational cost of verifying a candidate signature of an edge;
the computational cost of composing two edge signatures to obtain another; and
the size of a signature. Figures 4.1 and 4.2 summarize, respectively, the costs
and provable-security attributes of the various schemes we have introduced, and
compare them with the DL-TS scheme.

Since Fact -TS continues to employ the node certification technique, it incurs
the same costs as DL-TS and RSA-TS from the use of the standard signa-
ture scheme. However, as Figure 4.1 indicates, it is otherwise computationally
cheaper than DL-TS and RSA-TS for signing and verifying, reducing the extra
cost from cubic (exponentiation) to quadratic (a couple of multiplications and
an inverse).

The DL1m-TS scheme. The DL-TS scheme [MR02b] uses two generators. We
briefly note a simpler and perhaps more natural discrete-log based scheme called
DL1m-TS that uses a single generator. This scheme is a discrete-log based ana-
log of RSA-TS . As Figure 4.2 indicates, it offers some slight performance im-
provements over DL-TS . However, while the security of DL-TS is proven under
the standard discrete-logarithm assumption [MR02b], our proof of security of
DL1m-TS requires a stronger assumption, namely the hardness of the one-more
discrete logarithm problem as defined in Section 2.3.2.

The tradeoff here is analogous to one arising for discrete-logarithm based SI
schemes. DL-TS is similar to Okamoto’s two-generator using SI scheme OkCL-SI
[Oka93] presented in Figure 3.18, while DL1m-TS is similar to Schnorr’s one-
generator using Schnorr -SI scheme [Sch90] depicted in Figure 3.21. Schnorr’s
scheme is simpler, more natural and slightly more efficient. However, while
Okamoto proved his scheme secure (against impersonation under active at-
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Scheme Proven to be transitively unforgeable under
adaptive chosen-message attack assuming

RO?

DL-TS Security of standard signature scheme No
Hardness of discrete logs in prime-order group

DL1m-TS Security of standard signature scheme No
Hardness of one-more discrete logs in prime-order group

RSA-TS Security of standard signature scheme No
RSA is secure against one-more-inversion attack

Fact -TS Security of standard signature scheme No
Hardness of factoring

Gap-TS Security of standard signature scheme No
One-more gap Diffie-Hellman assumption

RSAH -TS RSA is secure against one-more-inversion attack Yes

FactH -TS Hardness of factoring Yes

GapH -TS One-more Gap Diffie-Hellman assumption Yes

Figure 4.2: Provable security attributes of transitive signature schemes. We indicate
the assumptions under which there is a proof of transitive unforgeability under adaptive

chosen-message attack, and whether or not the random oracle model is used.

tack) under the standard discrete-logarithm assumption, the proof of security for
Schnorr’s scheme (which remained elusive for a while) is based on the hardness
of the one-more discrete logarithm problem [BP02].

The Gap-TS scheme. Gap Diffie-Hellman groups are groups where the CDH
(Computational Diffie-Hellman) problem is hard but the DDH (Decision Diffie-
Hellman) problem is easy (see Section 2.3.2 for more details). They have been
used to yield short signatures [BLS01] and also simple, efficient schemes for
threshold, blind and multi-signatures [Bol03a].

We present a transitive signature scheme Gap-TS using these groups as well.
It is proven transitively unforgeable under adaptive chosen-message attack as-
suming hardness of the one-more CDH problem as defined in Section 2.3.2.

This scheme is actually not of direct interest, because it is inferior to the
DL1m-TS scheme both with regard to assumptions made to prove security and
with regard to performance. (In any group where one may implement Gap-TS ,
one may also implement DL1m-TS , and obtain security under weaker assump-
tions and with lower cost.) The value of Gap-TS is that, unlike DL1m-TS or
DL-TS , it is amenable to the hash-based modification described next, resulting
in GapH -TS , a scheme that has the shortest signatures amongst all schemes we
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have discussed.

4.1.4 Eliminating Node Certificates via Hashing

The RSAH -TS scheme. The RSA-TS scheme is amenable to a hash-based mod-
ification which eliminates the need for node certificates and thereby removes the
standard signature scheme, and all its associated costs, from the picture. The
public label of a node i is not chosen by the signer but rather implicitly speci-
fied as the output of a public hash function applied to i, and RSA decryption is
used to compute edge labels. We prove that RSAH -TS is transitively unforge-
able under adaptive chosen-message attack, assuming the hardness of one-more
RSA-inversion in a model where the hash function is a random oracle.

The FactH -TS scheme. The fact that squaring modulo a composite is a trap-
door one-way function makes Fact -TS amenable to a similar elimination of node
certificates via hashing. We present the FactH -TS transitive signature scheme
where the public label of a node i is not chosen by the signer but rather specified
via the output of a public hash function applied to i. (A difficulty, addressed
in Section 4.6.1, is that the hash output might not be a quadratic residue.) We
prove that FactH -TS is transitively unforgeable under adaptive chosen-message
attacks in the random oracle model assuming factoring the underlying modulus
is hard.

As Figure 4.1 indicates, the major cost savings is elimination of all costs
associated to the standard scheme. However, signing now requires computation
of square roots modulo N by the signer based on the prime factorization of N ,
which has cost comparable to an exponentiation modulo N . Thus overall the
main gain is the reduction in signature size.

The GapH -TS scheme. The Gap-TS scheme is also amenable to a similar hash-
based modification, resulting in a scheme, GapH -TS , whose parameters are de-
picted in Figure 4.1. The signature here is simply a group element, and by the
nature of Gap-DH groups, this means the GapH -TS scheme has the shortest
signatures of all.

DL-TS and DL1m-TS . The DL-TS and DL1m-TS schemes are not amenable
to the hash-based modification since the discrete exponentiation function is not
trapdoor over the groups used for these schemes.

Stateful versus stateless schemes. All of the five basic schemes DL-TS ,
DL1m-TS , RSA-TS , Fact -TS , Gap-TS are stateful. As discussed in Section 4.3,
there is a simple, general way to modify such schemes to obtain stateless ones. It
may be interesting to note, however, that the RSAH -TS and GapH -TS schemes
are naturally stateless. (FactH -TS is not, and needs to be modified according to
Section 4.3 if we want a stateless version.)
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4.1.5 Definitional Contributions

Regarding the composability property, Micali and Rivest [MR02b, p. 238] (we
have modified the notation to be consistent with ours) say: “... if someone sees
Alice’s signatures on edges {i, j} and {j, k} then that someone can easily com-
pute a valid signature on edge {i, k} that is indistinguishable from a signature
on that edge that Alice would have produced herself.” This seems to suggest
that composition is only required to work when the given signatures were ex-
plicitly produced by the signer, but in fact we want composition to work even if
the given signatures were themselves obtained via composition. Formulating an
appropriate requirement turns out to be more delicate than one might imagine.
One could require the simple condition that valid signatures (meaning, ones ac-
cepted by the verification algorithm relative to the signer’s public key) can be
composed to yield valid signatures. (This would follow Johnson et al. [JMSW02],
who require a condition that implies this.) But this requirement is too strong in
the current context. Indeed, as we show in Section 4.5, the DL-TS scheme does
not meet it, meaning there are valid signatures which, when composed, yield an
invalid signature. The same is true for our schemes.

It can be proved that for DL-TS and our schemes, finding valid signature
inputs that make the composition algorithm return an invalid signature is com-
putationally hard assuming the scheme is secure. But we prefer to not tie cor-
rectness of composition to security. Instead, we formulate correctness of compo-
sition via a recursive requirement that says that as long as one obtains signatures
either directly via the signer or by applying the composition operation to signa-
tures previously legitimately obtained or generated, then the resulting signature
is valid. (This would be relatively easy to formulate if the signer was stateless,
but needs more care due to the fact that the natural formulation of transitive
signature schemes often results in a stateful signer.) As part of the formalization
we provide in Definition 4.1, we follow Johnson et al. [JMSW02] and require a
very strong form of the indistinguishability requirement mentioned in the quote
above, namely that the signature output by the composition algorithm is not
just indistinguishable from, but identical to, the one the signer would have pro-
duced. (As argued by Johnson et al. [JMSW02], this guarantees privacy.) The
DL-TS scheme, as well as all our schemes, meet this strong definition.

4.1.6 Related Work

Transitive signatures are one case of a more general concept promulgated by
Rivest [Riv00] in talks, namely that of signature schemes that admit forgery
of signatures derived by some specific operation on previous signatures but re-
sist other forgeries. Johnson, Molnar, Song and Wagner [JMSW02] formalize a
notion of homomorphic signature schemes that captures this. Context Extrac-
tion Signatures, as introduced earlier [SBZ02], as well as redactable signatures
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and set-homomorphic signatures [JMSW02], fall in this framework. A signature
scheme that is homomorphic with respect to the prefix operation is presented
by Chari, Rabin and Rivest [CRR02].

The paper presented at the ASIACRYPT 2002 conference [BN00] contained
the results pertaining to RSA-TS , and presented the new schemes Fact -TS and
FactH -TS . This thesis, besides including proofs omitted in the preliminary ver-
sion, also adds the new schemes DL1m-TS ,Gap-TS ,GapH -TS .

There has been more work on transitive signatures subsequent to the appear-
ance of our work [3]. Namely, Hohenberger [Hoh03] presents a general framework
for the design and analysis of transitive signature schemes, as well as some re-
sults on the difficulty of constructing transitive signature schemes for directed
graphs.

4.2 Definitions

4.2.1 Transitive Signature Schemes and their Correctness

All graphs in this chapter are undirected. If G = (V,E) is a graph, its transitive

closure is the graph G̃ = (V, Ẽ) where {i, j} ∈ Ẽ iff there is a path from i to
j in G. A graph G∗ = (V ∗, E∗) is said to be transitively closed if for all nodes
i, j, k ∈ V ∗ such that {i, j} ∈ E∗ and {j, k} ∈ E∗, it also holds that {i, k} ∈ E∗;
or in other words, edge {i, j} ∈ E∗ whenever there is a path from i to j in G∗.
Note that the transitive closure of any graph G is a transitively closed graph.
Also note that any transitively closed graph can be partitioned into connected
components such that each component is a complete graph.

A transitive signature (TS) scheme TS = (TKg,TSign,TVf,Comp) is speci-
fied by four polynomial-time algorithms, and the functionality is as follows:

• The randomized key generation algorithm TKg takes as input 1k, where
k ∈ N is the security parameter, and returns a pair (tpk , tsk) consisting of
a public key and matching secret key.

• The signing algorithm TSign, which could be stateful or randomized (or
both), takes as input the secret key tsk and nodes i, j ∈ N, and returns a
value called an original signature of edge {i, j} relative to tsk . If stateful,
it maintains state which it updates upon each invocation.

• The deterministic verification algorithm TVf, given tpk , nodes i, j ∈ N,
and a candidate signature σ, returns either 1 or 0. In the former case we
say that σ is a valid signature of edge {i, j} relative to tpk .

• The deterministic composition algorithm Comp takes tpk , nodes i, j, k ∈ N

and values σ1, σ2 to return either a value σ or a symbol ⊥ to indicate
failure.
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(tpk , tsk)
R← TKg(1k)

S ← ∅ ; Legit ← true ; NotOK ← false

Run F(tpk : TSign,Comp) replying to its oracle queries as follows:
If F makes TSign query i, j then

If i = j then Legit ← false

Else

σ
R← TSign(tsk , i, j) ; S ← S ∪ {({i, j}, σ)}

If TVf(tpk , i, j, σ) = 0 then NotOK ← true

If F makes Comp query i, j, k, σ1, σ2 then
If [({i, j}, σ1) 6∈ S or ({j, k}, σ2) 6∈ S or i, j, k are not all distinct] then

Legit ← false

Else
σ ← Comp(tpk , i, j, k, σ1, σ2) ; S ← S ∪ {({i, k}, σ)}
τ ← TSign(tsk , i, k)
If [(σ 6= τ) or TVf(tpk , i, k, σ) = 0] then NotOK ← true

When F halts, output (Legit ∧NotOK ) and halt

Figure 4.3: Experiment used to define correctness of the transitive signature
scheme TS = (TKg,TSign,TVf,Comp).

The above formulation makes the simplifying assumption that the nodes of
the graph are positive integers. In practice it is desirable to allow users to
name nodes via whatever identifiers they choose, but these names can always
be encoded as integers, so we keep the formulation simple.

Naturally, it is required that if σ is an original signature of edge {i, j} relative
to tsk then it is a valid signature of {i, j} relative to tpk .

As discussed in Section 4.1.5, formulating a correctness requirement for the
composition algorithm is more delicate. Micali and Rivest [MR02b] seem to
suggest that composition is only required to work when the given signatures
were explicitly produced by the signer, but in fact we want composition to
work even if the given signatures were themselves obtained via composition.
Furthermore the indistinguishability requirement is not formalized in [MR02b].

Definitions taking these issues into account are provided in the more general
context of homomorphic signature schemes [JMSW02]. They ask that when-
ever the composition algorithm is invoked on valid signatures (valid meaning
accepted by the verification algorithm relative to the signer’s public key) it
returns the same signature as the signer would produce. This captures indistin-
guishability in a strong way that guarantees privacy. However, one implication
of their definition is that whenever the composition algorithm is invoked on
valid signatures, it returns a valid signature, and this last property is not true
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of known node certification based transitive signature schemes such as DL-TS ,
RSA-TS , and also not true for our new schemes. For all these schemes, it is pos-
sible to construct examples of valid signature inputs that, when provided to the
composition algorithm, result in the latter failing (returning ⊥ because it can-
not compose) or returning an invalid signature, as we illustrate in Section 4.5.
(Roughly, this happens because composition of a signature σ1 of {i, j} with a
signature σ2 of {j, k} in these schemes requires that the public labels of node
j as specified in σ1 and σ2 be the same. Validity of the individual signatures
cannot guarantee this.)

This is not a weakness in the schemes, because in practice composition is
applied not to arbitrary valid signatures but to ones that are legitimate, the
latter being recursively defined: a signature is legitimate if it is either obtained
directly by the signer, or obtained by applying the composition algorithm to
legitimate signatures. What this points to is that we need to formulate a new
correctness definition for composition that captures this intuition and results
in a notion met by the known transitive signature schemes. Roughly, we would
like a formulation that says that if the composition algorithm is invoked on le-
gitimate signatures, then it returns the same signature as the signer would have
produced. (Here, we are continuing to follow Johnson et al. [JMSW02] in cap-
turing indistinguishability by the strong requirement that composed signatures
are identical to original ones, but weakening their requirement by asking that
this be true not for all valid signature inputs to the composition algorithm, but
only for legitimate inputs.)

The formalization would be relatively simple (the informal description above
would pretty much be it) if the signing algorithm were stateless, but the natural
formulation of numerous transitive signature schemes seems to be in terms of a
stateful signing algorithm. In this case, it is not clear what it means that the
output of the composition algorithm is the same as that of the signer, since the
latter’s output depends on its internal state which could be different at different
times. To obtain a formal definition of correctness that takes into account the
statefulness of the signing algorithm, we proceed as follows. We associate to
any algorithm F (deterministic, halting, but not computationally limited) and
security parameter k ∈ N the experiment of Figure 4.3, which provides F with
oracles

TSign(·, ·) = TSign(tsk , ·, ·) and Comp(·, ·, ·, ·, ·) = Comp(tpk , ·, ·, ·, ·, ·) ,
where tpk , tsk have been produced by running TKg on input 1k. In this exper-
iment, the TSign oracle maintains state, and updates this state each time it is
invoked. It also tosses coins anew at each invocation if it is randomized.

Definition 4.1 We say that the transitive signature scheme TS is correct if for
every (computationally unbounded) algorithm F and every k, the output of the
experiment of Figure 4.3 is true with probability zero.



94 Transitive Signatures

The experiment computes a boolean Legit which is set to false if A ever makes
an “illegitimate” query. It also computes a boolean NotOK which is set to true

if a signature returned by the composition algorithm differs from the original
one. To win, A must stay legitimate (meaning Legit = true) but violate correct-
ness (meaning NotOK = true). The experiment returns true iff A wins. The
definition requires that this happens with probability zero.

We say a transitive signature scheme is non-trivial if there is a polynomial p
such that for all k, all tpk , tsk produced via TKg on input 1k, and all i, j ∈ N, if
σ is a valid signature of edge {i, j} relative to tpk , then the size of σ is at most
p(k). (This excludes schemes in which composition is performed by chaining.)
We are only interested in non-trivial schemes, and all schemes in this chapter
are non-trivial. We will not say this explicitly again.

4.2.2 Security of Transitive Signature Schemes

We recall the notion of security of transitive signature schemes [MR02b]. As-
sociated to a transitive signature scheme TS = (TKg,TSign,TVf,Comp), an
adversary algorithm F and a security parameter k ∈ N is an experiment, de-
noted

Exptu-cma
TS ,F (k) ,

that returns 1 if and only if F is successful in its attack on the scheme. The
experiment begins by running TKg on input 1k to get keys (tpk , tsk). It then runs
F, providing this adversary with input tpk and access to an oracle TSign(·, ·) =
TSign(tsk , ·, ·). The oracle is assumed to maintain state or toss coins as needed.
Let E be the set of all edges {i, j} such that F made oracle query i, j, and
let V be the set of all nodes involved in edges in E. Eventually, F will output
i′, j′ ∈ N and a forgery σ′. We say that F wins the game if σ′ is a valid signature
of {i′, j′} relative to tpk but edge {i′, j′} is not in the transitive closure of graph
G = (V,E). The experiment returns 1 if F wins and 0 otherwise. The advantage
of F in its attack on TS is the function Advtu-cma

TS ,F (·) defined for k ∈ N by

Advtu-cma
TS ,F (k) = Pr

[
Exptu-cma

TS ,F (k) = 1
]
,

where the probability is taken over all the random choices made in the experi-
ment. We say that TS is transitively unforgeable under adaptive chosen-message
attack if the function Advtu-cma

TS ,F (·) is negligible for any adversary F whose run-
ning time is polynomial in the security parameter k.

Some of our schemes are defined in the random oracle model (see Section 2.2),
which means that the algorithms TSign,TVf,Comp all have oracle access to one
or more functions which in the correctness and security experiments are assumed
to be drawn at random from appropriate spaces. Formally, both the experiment
of Figure 4.3 and Exptu-cma

TS ,F (k) are augmented to choose a random function H

mapping {0, 1}∗ to an appropriate range, possibly depending on the public key,
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and the adversary as well as the TSign,TVf,Comp algorithms then get oracle
access to this function. In Definition 4.1, the probability includes the choice of
these functions, and so does the probability in the definition of Advtu-cma

TS ,F (k).

4.3 Stateful versus Stateless Schemes

The signing algorithms of many transitive signature schemes are stateful. This
is true for the RSA-TS scheme, where it is important for composition that the
signer associates a single public label to node i. As we will see, statefulness
can also be important for security in that it associates to a public label L(i) a
single secret label `(i). (The Fact -TS and FactH -TS schemes for example would
otherwise soon give away two different square roots of L(i), allowing an attacker
to factor the modulus.) The DL-TS , DL1m-TS and Gap-TS schemes also have
stateful signing algorithms.

In case one would like a stateless scheme, we note here a simple transfor-
mation that can be used to make the signer stateless, without loss of security
or efficiency. Namely, let the signer’s secret key include a key K specifying an
instance FK from a pseudorandom function family F [GGM86], and use FK(i)
as the underlying coins (randomness) for all choices made by the signer related
to node i. This enables the signer to recompute quantities as it needs them
(rather than storing them), and yet be consistent, always creating the same
quantities for a given node. In practice one can implement the pseudorandom
function family via a block cipher. Since operation of a block cipher is signifi-
cantly cheaper than the number-theoretic operations already being used in the
transitive signature schemes, the stateless scheme will have a cost close to that
of the original stateful one.

Having pointed this out, in the rest of the chapter we continue to work with
stateful signing algorithms wherever they are more natural or convenient. We
also note that, interestingly, the RSAH -TS and GapH -TS schemes are naturally
stateless.

4.4 Transitive Signatures based on RSA

The RSA-TS scheme was noted by Micali and Rivest [MR02b] as a simple alter-
native to DL-TS which can be shown to be transitively unforgeable under non-
adaptive chosen-message attacks assuming RSA is one-way. We do not know
whether the same assumption suffices to prove it is transitively unforgeable un-
der adaptive chosen-message attacks, but here we will show that this is true
under a stronger assumption.

We defined an RSA key generator Krsa in Section 2.3.1 as a randomized,
polynomial-time algorithm that on input 1k outputs a tuple (N, e, d) where
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ed ≡ 1 mod ϕ(N). We do not attempt to pin down exactly how the generator
operates, for example with regard to the distribution on the primes it chooses,
or the choice of encryption exponent. (The latter may be chosen to be a small
number, like 3, for efficiency, or a large number if desired.) All we ask is that
the one-more RSA-inversion problem associated to the generator be hard. This
makes our results more general.

The scheme. We associate to any RSA key generator Krsa and any standard
digital signature scheme SS = (SKg,SSign,SVf) a transitive signature scheme
RSA-TS = (TKg,TSign,TVf,Comp) defined as follows:

• TKg(1k) does the following

(1.1) Run SKg(1k) to generate a key pair (spk , ssk) for SS

(1.2) Run Krsa(1
k) to get a triple (N, e, d)

(1.3) Output tpk = (N, e, spk) as the public key and tsk = (N, e, ssk)
as the secret key.

Note that the exponent d is discarded and in particular not part of the
secret key.

• The signing algorithm TSign maintains state St = (V, `, L,Σ) where V ⊆ N

is the set of all queried nodes, the function `: V → Z
∗
N assigns to each

node i ∈ V a secret label `(i) ∈ Z
∗
N , while the function L: V → Z

∗
N assigns

to each node i ∈ V a public label L(i), and the function Σ: V → {0, 1}∗
assigns to each node i a standard signature on i‖L(i) under ssk . When
invoked on inputs tsk , i, j, meaning when asked to produce a signature on
edge {i, j}, it returns ⊥ if i = j, and otherwise does the following:

(2.1) If i > j then swap(i, j)

(2.2) If i 6∈ V then

(2.3) V ← V ∪ {i} ; `(i)
R← Z

∗
N ; L(i)← `(i)e mod N

(2.4) Σ(i)← SSign(ssk , i‖L(i))

(2.5) If j 6∈ V then

(2.6) V ← V ∪ {j} ; `(j)
R← Z

∗
N ; L(j)← `(j)e mod N

(2.7) Σ(j)← SSign(ssk , j‖L(j))

(2.8) δ ← `(i)`(j)−1 mod N

(2.9) Ci ← (i, L(i),Σ(i)) ; Cj ← (j, L(j),Σ(j))

(2.10) Return (Ci, Cj , δ) as the signature of {i, j}.

We refer to Ci = (i, L(i),Σ(i)) as a certificate of node i.

• TVf, on input tpk = (N, e, spk), nodes i, j and a candidate signature σ,
proceeds as follows:
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(3.1) If i > j then swap(i, j)

(3.2) Parse σ as (Ci, Cj , δ), parse Ci as (i, Li,Σi), parse Cj as (j, Lj ,Σj)

(3.3) If SVf(spk , i‖Li,Σi) = 0 or SVf(spk , j‖Lj ,Σj) = 0 then return 0

(3.4) If δe ≡ LiL
−1
j mod N then return 1 else return 0.

• The composition algorithm Comp takes tpk , nodes i, j, k and signatures
σ1 and σ2, and computes a composed signature for edge {i, k} as follows:

(4.1) If i > k then swap(i, k) ; swap(σ1, σ2)

(4.2) Parse σ1 as (C1, C2, δ1) ; Parse σ2 as (C3, C4, δ2)

(4.3) If i > j then swap(C1, C2) ; δ1 ← δ−1
1 mod N

(4.4) If j > k then swap(C3, C4) ; δ2 ← δ−1
2 mod N

(4.5) δ ← δ1δ2 mod N

(4.6) Return (C1, C4, δ) as the signature for {i, k}.

The following proposition says that the RSA-TS scheme meets our correct-
ness definition for TS schemes. We note that it was to ensure that this correct-
ness requirement is met that we have specified the composition algorithm above
in full detail.

Proposition 4.2 The RSA-TS transitive signature scheme described above sat-
isfies the correctness requirement of Definition 4.1.

We prove the above proposition using the two following claims. The first shows
an invariant condition that holds at any time during the experiment, the sec-
ond uses this invariant to show that the variable NotOK in the experiment of
Figure 4.3 can never become true. From this, the above proposition follows.

Claim 4.3 If St = (`, L,Σ, V ) is the internal state of the TSign algorithm in
RSA-TS , then at any time during the experiment in Figure 4.3, the following
invariant holds true:

Legit = false ∨ ∀ ({i, j}, σ) ∈ S :

i 6= j ∧ σ =

{ (
(i, L(i),Σ(i)), (j, L(j),Σ(j)), `(i)`(j)−1 mod N

)
if i < j(

(j, L(j),Σ(j)), (i, L(i),Σ(i)), `(j)`(i)−1 mod N
)

if j < i
(4.1)

Proof: We will prove the claim by induction on the number of TSign oracle
queries q. Initially, S = ∅ and the claim is trivial. Suppose that the claim is true
after q − 1 oracle queries. We will prove that it still holds after the qth oracle
query.



98 Transitive Signatures

If Legit = false before the qth query, then it will still be false after the
qth query, directly proving the claim. We now concentrate on the case that
Legit = true.

If the qth query is a TSign query i, j with i = j, Legit is set to false,
again easily proving the claim. Otherwise, a new element ({i, j}, σ) is added
to S, where σ is the output of TSign(tsk , i, j). All elements of S that satisfied
Equation (4.1) in the previous state of TSign, will still do so in the new state,
because TSign only adds new entries to `, L and Σ, but never changes existing
entries. Therefore, it suffices to show that the newly added element ({i, j}, σ)
satisfies Equation (4.1). This can be seen from the description of the TSign
algorithm. If i < j, it outputs a signature σ = ((i, L(i),Σ(i)), (j, L(j),Σ(j)), δ)
with δ = `(i)`(j)−1 mod N , as required. If j < i, TSign first swaps the values
of i and j in line (2.1), such that the output of the algorithm is actually σ =
((j, L(j),Σ(j)), (i, L(i),Σ(i)), δ) with δ = `(j)`(i)−1 mod N , again as required
by Equation (4.1).

If the qth query is a Comp query i, j, k, σ1, σ2, we prove the claim as follows.
If ({i, j}, σ1) 6∈ S or ({j, k}, σ2) 6∈ S or i, j, k are not all distinct, then Legit is
set to false and the claim holds true. Otherwise, the composition algorithm
is run to create σ ← Comp(tpk , i, j, k, σ1, σ2), and the element ({i, k}, σ) is
added to S. As the internal state of the TSign oracle is not affected by the
composition algorithm, all elements that previously satisfied Equation (4.1) will
still do so. We only have to check that the newly added element also satisfies
Equation (4.1). If i > k then i and k are swapped in line (4.1), as are the
signatures σ1 and σ2. At this point we have signatures σ1 and σ2 for edges {i, j}
and {j, k} satisfying equation Equation (4.1) with i < k. Let σ1 = (C1, C2, δ1),
and let σ2 = (C3, C4, δ2). Line (4.3) of the Comp algorithm swaps C1 and C2

and inverts δ1 if i > j, ensuring that after this step C1 = (i, L(i),Σ(i)), C2 =
(j, L(j),Σ(j)) and δ1 ≡ `(i)`(j)−1 mod N . The same is done with C3, C4 and
δ2 if j > k in line (4.4), ensuring that C3 = (j, L(j),Σ(j)), C4 = (k, L(k),Σ(k))
and δ2 ≡ `(j)`(k)−1 mod N . The signature that is finally returned is (C1, C4, δ),
which indeed satisfies Equation (4.1) since i < k and δ is computed as δ1δ2 ≡
`(i)`(j)−1 · `(j)`(k)−1 ≡ `(i)`(k)−1 mod N .

A corollary of the previous claim is that at any time during the experiment,
TVf(tpk , i, j, σ) = 1 for all ({i, j}, σ) ∈ S. From the description of the TSign
algorithm, we can see that L(i) ≡ `(i)e mod N and Σ(i) is a valid standard
signature under spk for i‖L(i). Given these facts and Equation (4.1), we can go
through the description of TVf and check that it always returns 1.

Claim 4.4 The variable NotOK in the experiment in Figure 4.3 can never be-
come true.

Proof: By the corollary above, the verification of a signature in S always
succeeds, so the only way left for NotOK to become true during the experiment
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is when σ 6= τ in a Comp query. The output of the signature algorithm for
nodes i, k is τ = ((i, L(i),Σ(i)), (k, L(k),Σ(k)), `(i)`(k)−1) when i < k, and is
τ = ((k, L(k),Σ(k)), (i, L(i),Σ(i)), `(k)`(i)−1) if k < i. We now prove that this
is identical to the output of the composition algorithm when applied to nodes
i, j, k and signatures σ1, σ2 such that ({i, j}, σ1), ({j, k}, σ2) ∈ S. In the proof
of Claim 4.3, we already argued that the variables C1 and C4 by the end of the
Comp algorithm are always assigned values (i, L(i),Σ(i)) and (k, L(k),Σ(k)),
respectively, and that δ ≡ `(i)`(k)−1 mod N . The values for i and k, however,
might have been swapped in the first line of the Comp algorithm, so the returned
signature is actually σ = ((i, L(i),Σ(i)), (k, L(k),Σ(k)), `(i)`(k)−1) if i < k and
σ = ((k, L(k),Σ(k)), (i, L(i),Σ(i)), `(k)`(i)−1) if k < i, exactly like τ .

Since the experiment outputs (Legit ∧ NotOK ) at the end of its execution,
the previous claim implies that it returns false for every adversary A, thereby
proving the correctness of RSA-TS .

Computational costs. As Figure 4.1 indicates, over and above costs associ-
ated to the standard signature scheme, signing and verifying require RSA en-
cryptions, whose cost dominates that of quadratic-time operations such as mul-
tiplications and inverses mod N . The cost of the RSA encryptions is O(|e| · |N |2)
and depends on the choice of encryption exponent made by the RSA key gen-
erator; it can be small for a small exponent. Composition is efficient, involving
only quadratic-time operations.

Security of RSA-TS . The following theorem says that as long as the RSA
one-more-inversion problem is hard for the associated generator, and as long as
the standard signature scheme is secure, the RSA-TS transitive signature scheme
is transitively unforgeable under adaptive chosen-message attack.

We first sketch the security proof of RSA-TS against a non-adaptive adver-
sary assuming the one-wayness of RSA and then explain why the same technique
fails against adaptive adversaries. Subsequently we prove the scheme secure in
the adaptive setting under the stronger one-more RSA assumption.

GivenN, e, y and a non-adaptive adversary A attacking RSA-TS , we can com-
pute x such that xe ≡ y mod N as follows. Generate a fresh key pair (spk , ssk)
for SS and run A on tpk = (N, e, spk). The adversary A has to announce the
entire set of edges E it wants to have signed before seeing any of the replies.
If G = (V,E) is the graph defined by the signature queries and G̃ = (V, Ẽ) is

its transitive closure, then Ẽ partitions V into n ≤ |V | ≤ 2|E| disjoint compo-
nents. Assuming the standard signature scheme is secure, the adversary cannot
create its own node certificates, so a successful forgery must connect two nodes
from different components in V . We sign all edges in E using the regular TSign
algorithm, except for the edges in one randomly chosen ‘special’ component for
which the public labels are computed as L(i)← `(i)e · y mod N . Note that the
validity of signatures is not affected by multiplying all public labels in a com-
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ponent with the same factor. With probability of at least 2/n, the adversary’s
forgery connects a node i in the special component to a node j in a different com-
ponent.1 Because of the assumed unforgeability of node certificates, the forgery
provides us with a value δ such that δe ≡ L(i)L(j)−1 ≡ `(i)ey · `(j)−e mod N
and hence we can compute x as δ · `(i)−1`(j) mod N .

The reason the above technique fails for adaptive adversaries is that there’s
no way to predict which nodes will be joined together in components. Not only
would we have to guess one of the components that will be involved in the
forgery, but also which nodes will be part of that component. The odds of
guessing this correctly are in the order of 2−|E|, reducing our chance of inverting
y to a negligible quantity. While the adaptive security of RSA-TS under the
one-wayness of RSA remains an open question, we found that it is provably
secure under the stronger one-more RSA assumption, as stated in the following
theorem.

Forging a signature for RSA-TS is trivial if an insecure instance is used for
the RSA key generator Krsa or the standard signature scheme SS . The following
theorem, however, states that the construction of RSA-TS contains no weak-
nesses other than those induced by the underlying primitives.

Theorem 4.5 Let Krsa be an RSA key generator and let SS = (SKg,SSign,SVf)
be a SS scheme. Let RSA-TS be the TS scheme associated to Krsa and SS as
defined above. If the one-more RSA problem associated to Krsa is hard and SS
is unforgeable under adaptive chosen-message attack (uf-cma secure), then the
RSA-TS scheme is transitively unforgeable under adaptive chosen-message attack
(tu-cma secure).

Proof: Suppose we are given a poly(k)-time adversary F for RSA-TS . We
construct a one-more RSA adversary A, and a forger B attacking SS , both
poly(k)-time, such that for all k

Advtu-cma
RSA-TS ,F(k) ≤ Adv1m-rsa

Krsa,A (k) + Advuf-cma
SS ,B (k) . (4.2)

The assumptions, namely that the one-more RSA problem associated to Krsa is
hard and SS is unforgeable under adaptive chosen-message attack, imply that
the advantage functions on the right-hand-side of Equation (4.2) are negligible.
The equation then says that Advtu-cma

RSA-TS ,F(·) is also negligible, which completes
the proof. It remains to describe A and B.

The one-more RSA adversary A, as per the definitions above, gets inputs N, e
and, has access to an inversion oracle Inv(·) and a challenge oracle Chall. It
wins if it outputs the inverses of all points returned by Chall, using strictly less
queries to the inversion oracle than it makes to the challenge oracle. Let us now

1We can even pump up this probability to 1/2 by choosing n/2 special components, but
this is not crucial to the proof since all we need is non-negligible success probability.
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describe how it operates. It first generates a fresh key pair (spk , ssk) for SS by
running SKg(1k). It then runs F on input tpk = (N, e, spk). The idea is that when
answering F’s signature queries, A uses target points generated by the challenge
oracle as public labels. Running the TSign algorithm in order to create signatures
is not possible because A doesn’t know the corresponding secret labels; instead,
it sparingly uses the inversion oracle to compute edge labels, calling it only
when the requested signature cannot be computed by composing previously
signed edges. For this purpose, A maintains state information St = (V,L,Σ,∆),
where V , L and Σ are defined as in the TSign algorithm, but ∆ : V ×V → Z

∗
N is

a function storing known edge labels. Now, in detail, when asked for a signature
on edge {i, j}, A proceeds as follows:

(5.1) If i > j then swap(i, j)
(5.2) If i 6∈ V then
(5.3) V ← V ∪ {i} ; L(i)← Chall(ε) ; ∆(i, i)← 1
(5.4) Σ(i)← SSign(ssk , i‖L(i))
(5.5) If j 6∈ V then
(5.6) V ← V ∪ {j} ; L(j)← Chall(ε) ; ∆(j, j)← 1
(5.7) Σ(j)← SSign(ssk , j‖L(j))
(5.8) If ∆(i, j) is not defined then
(5.9) ∆(i, j)← Inv(L(i) · L(j)−1 mod N)
(5.10) ∆(j, i)← ∆(i, j)−1 mod N
(5.11) For all v ∈ V \ {i, j} do
(5.12) If ∆(v, i) is defined then
(5.13) ∆(v, j)← ∆(v, i) ·∆(i, j) mod N
(5.14) ∆(j, v)← ∆(v, j)−1 mod N
(5.15) If ∆(v, j) is defined then
(5.16) ∆(v, i)← ∆(v, j) ·∆(j, i) mod N
(5.17) ∆(i, v)← ∆(v, i)−1 mod N
(5.18) δ ← ∆(i, j) ; Return ((i‖L(i),Σ(i)), (j‖L(j),Σ(j)), δ) to F.

At the end of its execution, F outputs a forgery σ′ = ((i′, Li′ ,Σi′), (j
′, Lj′ ,Σj′),

δ′) for edge {i′, j′}. (During this analysis, we assume without loss of generality
that i′ < j′. If this is not the case, one can swap i′ and j′.) Let G = (V,E) be
the graph defined by F’s signature queries, and let G̃ = (V, Ẽ) be its transitive
closure. If σ′ is not a valid forgery, meaning that TVf(tpk , i′, j′, σ′) = 0 or
{i′, j′} ∈ Ẽ, then A aborts. Let E be the event that F’s forgery contains recycled
node certificates, i.e. Li′ = L(i′) and Lj′ = L(j′). In case of the complementary
event E, A aborts. Else it computes inverses of all challenges that it received
from its challenge oracle, as follows. The transitively closed graph G̃ is divided
into c disjoint components Vk ⊂ V for k = 1 . . . c. Let Vk′ be the component
containing node i′. For all k = 1 . . . c, k 6= k′, algorithm A chooses a reference
node rk ∈ Vk and computes the secret labels of all nodes in Vk as
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(5.19) `(rk)← Inv(L(rk))
(5.20) For all v ∈ Vk \ {rk} do
(5.21) `(v)← ∆(v, rk) · `(rk) mod N

while the secret labels of all nodes in component Vk′ are computed as

(5.22) `(i′)← δ′ · `(j′) mod N
(5.23) For all v ∈ Vk′ \ {i′} do
(5.24) `(v)← ∆(v, i′) · `(i′) .

From the way A answers F’s signature queries, one can see that ∆(i, j) is defined
for all nodes i, j that are in the same component, and hence that the values of
∆ needed in the computations above are also defined. Algorithm A can now
output the inverses of all its target points: for each i ∈ V , the public label L(i)
was obtained as a result of a query to Chall(), so the algorithm outputs `(i)
for all i ∈ V .

Now we need to check that A actually won the game. To do this we have to count
the number of inversion queries. For each component Vk, k 6= k′, algorithm A
needed |Vk| − 1 inversion queries to answer F’s signature queries (the number of
edges in a minimal spanning tree of Vk) plus one additional query at the end of
the game to compute the secret label of rk, summing up to |Vk| inversion queries
for each component. The component Vk′ only needed |Vk′ |−1 queries, because it
did not need the additional query. So in summary, A inverted |V | target points
using

∑
k 6=k′ |Vk| + (|Vk′ | − 1) = |V | − 1 inversion queries, and hence wins the

game.

The description of the forger B is rather straightforward: when run on input
spk , it generates RSA parameters N, e, d using Krsa and runs F on input tpk =
(N, e, spk), answering its signature queries using the real TSign algorithm but
consulting its own SSign(ssk , ·) oracle to create node certificates. In the event
E that F’s forgery recycles old node certificates, B gives up, but otherwise (in
the event E) at least one of the node certificates contains a signature on a new
message, and this can be used to output a forgery.

It is clear that A’s simulation of F’s environment is perfect. Accordingly we have

Advtu-cma
RSA-TS ,F(k) = Pr

[
Exptu-cma

RSA-TS ,F(k) = 1
]

= Pr
[
Exptu-cma

RSA-TS ,F(k) = 1 ∧ E
]

+Pr
[
Exptu-cma

RSA-TS ,F(k) = 1 ∧ E
]

≤ Adv1m-rsa
Krsa,A (k) + Advuf-cma

SS ,B (k) .

This yields Equation (4.2), as required.
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4.5 Definitional Issues with Correctness

We take a short side step to demonstrate the need for our (rather compli-
cated) correctness definition. It is natural to consider the following alterna-
tive definition of correctness for composition. Say that a transitive signature
scheme TS = (TKg,TSign,TVf,Comp) is strongly-correct if for every k, and
every (tpk , tsk) that might be returned by TKg(1k), we have:

If σ1 is a valid signature of edge {i, j} relative to tpk , meaning that
TVf(tpk , i, j, σ1) = 1

And σ2 is a valid signature of edge {j, k} relative to tpk , meaning that
TVf(tpk , j, k, σ2) = 1

And σ = Comp(tpk , i, j, k, σ1, σ2)
Then: σ is a valid signature of edge {i, k} relative to tpk , meaning that

TVf(tpk , i, k, σ) = 1

The purpose of this section is to point out that the RSA-TS scheme does not
meet this definition. Similar examples can be used to see that neither Micali
and Rivest’s DL-TS scheme, nor any of our new schemes meet this definition.
Note that the definition of Johnson et al. [JMSW02] implies strong-correctness
as we have formulated it above (it requires more) and thus neither the DL-TS
scheme nor our schemes meet their definition.

We note that the “bad” inputs of our example can only be created by an
adversary capable of forging standard signatures. However, we feel that compo-
sition is a “correctness” rather than a security requirement and should not rely
on computational restrictions on adversaries.

We present a counter-example to show that the RSA-TS scheme does not
meet the above strong-correctness requirement. Suppose i, j, k are distinct nodes
such that i < j < k. Suppose σ1 = (Ci, Cj , δ1) is a valid signature of {i, j}
relative to tpk , meaning

• Ci = (i, Li,Σi)

• Cj = (j, Lj ,Σj)

• δe
1 ≡ LiL

−1
j mod N

• Σi a valid signature of i‖Li relative to spk

• Σj a valid signature of j‖Lj relative to spk .

Also suppose σ2 = (C ′
j , Ck, δ2) is a valid signature of {j, k} relative to tpk ,

meaning that

• C ′
j = (j, L′

j ,Σ
′
j)

• Ck = (k, Lk,Σk)
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• δe
2 ≡ L′

jL
−1
k mod N

• Σ′
j a valid signature of j‖L′

j relative to spk

• Σk a valid signature of k‖Lk relative to spk .

On inputs tpk , i, j, k, σ1, σ2, the composition algorithm of the RSA-TS scheme is
defined to return (Ci, Ck, δ3) where

δ3 ≡ δ1 · δ2 mod N .

Now, using the above, we have

δe
3 ≡ δe

1 · δe
2

≡ LiL
−1
j · L′

jL
−1
k mod N .

For the verification algorithm to accept, the above should equal LiL
−1
k mod N ,

meaning the verification algorithm would only accept (Ci, Ck, δ3) as a valid
signature of {i, k} relative to tpk if Lj = L′

j . However, the validity of the given
signatures σ1, σ2 does not imply that Lj = L′

j . Accordingly, we have an example
of valid signatures yielding, via composition, an invalid signature. This shows
that the RSA-TS scheme is not strongly-correct.

Note that creating the valid signatures σ1, σ2 that make composition fail,
even given oracle access to the TSign algorithm, would require forging relative to
the standard scheme, so in practice we do not expect the composition algorithm
to receive these inputs. However, it is inconvenient to formulate a correctness
requirement that hinges on security.

As we have shown in Proposition 4.2, the RSA-TS scheme is, however, cor-
rect as per Definition 4.1. Even though an algorithm A in the experiment of
Figure 4.3 is not computationally restricted and could create σ1, σ2 as above
and invoke the composition algorithm, examination of the experiment shows
that the flag Legit would be set to false, and thus A would not win, so our
definition is not violated.

4.6 New Schemes

We describe three new transitive signature schemes, all proven transitively un-
forgeable under adaptive chosen-message attack.

4.6.1 The Fact -TS Scheme

Our factoring-based transitive signature (Fact -TS) scheme stays within the node
certification technique but, by implementing label algebra via square roots mod-
ulo a composite, provides security based on factoring while reducing some costs
compared to DL-TS and RSA-TS .
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The scheme is parameterized with a modulus generator Kfact as defined in
Section 2.3.1. There are numerous possible modulus generators which differ in
the structure of the primes chosen or the distribution under which they are
chosen. We do not restrict the type of generator, but only assume that the
associated factoring problem is hard.

The scheme. We associate to any modulus generator Kfact and any standard
digital signature scheme SS = (SKg,SSign,SVf) a transitive signature scheme
Fact -TS = (TKg,TSign,TVf,Comp) defined as follows:

• TKg(1k) proceeds as in RSA-TS with the following changes:

(1.2) Run Kfact(1
k) to get a triple (N, p, q)

(1.3) Output tpk = (N, spk) as the public key and tsk = (N, ssk)

as the secret key.

Note that the primes p, q are discarded and in particular are not part of
the secret key.

• The signing algorithm TSign maintains state as in RSA-TS . On inputs
tsk , i, j it proceeds as the TSign algorithm of RSA-TS except that rather
than computing L(·) as `(·)e it computes L(·) as `(·)2 in lines (2.3) and
(2.6).

• TVf, on input tpk = (N, spk), nodes i, j and a candidate signature σ,
proceeds exactly as the TVf algorithm of the RSA-TS scheme, except that
δe is replaced with δ2 in line (3.4).

• The composition algorithm is identical to that of RSA-TS .

A proof by induction similar to the one of Proposition 4.2 can be used to show
the Fact -TS transitive signature scheme described above satisfies the correctness
requirement of Definition 4.1.

Computational costs. The cost for the signature algorithm is dominated by
multiplications and inversions modulo N , for both of which there exist algo-
rithms quadratic in |N |, and the cost of generating two standard signatures,
which depends on the choice of underlying standard signature scheme. It is not
strictly necessary to test membership in Z

∗
N , because it is very unlikely that a

randomly generated value is not coprime with N . (Otherwise N could be eas-
ily factored by computing the greatest common divisor with a random integer.)
Verification takes a couple of multiplications mod N and two standard signature
verifications. The composition of two signatures involves one multiplication and
possibly an inversion in Z

∗
N . See Figure 4.1 for the cost summary.

Security. The following is the formal statement of our result about the security
of Fact -TS .
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Theorem 4.6 Let Kfact be a modulus generator and let SS = (SKg,SSign,SVf)
be a SS scheme. Let Fact -TS be the TS scheme associated to them as defined
above. If the factoring problem associated to Kfact is hard and SS is unforgeable
under adaptive chosen-message attack, then Fact -TS is transitively unforgeable
under adaptive chosen-message attack.

Although RSA-TS and Fact -TS are very similar, the security of the latter is
based on a weaker assumption. Intuitively, the reason is that RSA induces a
permutation on Z

∗
N , whereas squaring maps 4 different elements of Z

∗
N to the

same square and two different roots of the same square reveal the factorization
of the modulus.

Proof of Theorem 4.6. Suppose we are given a poly(k)-time adversary F for
Fact -TS . We construct a factoring adversary A, and a forger B attacking SS ,
both poly(k)-time, such that for all k

Advtu-cma
Fact-TS ,F(k) ≤ 2 ·Advfact

Kfact,A
(k) + Advuf-cma

SS ,B (k) . (4.3)

The assumptions made in the theorem conclude the proof. It remains to describe
A and B.

The factoring algorithm A gets as input a modulus N generated by Kfact and be-

gins by picking keys for the standard signature scheme via (spk , ssk)
R← SKg(1k).

It then lets tpk = (N, spk) be a public key for the transitive signature scheme
and starts running F on input tpk . To reply to F’s TSign oracle queries, al-
gorithm A simply runs the TSign procedure of the transitive signature scheme,
which it can because it possesses the secret key tsk = (N, ssk) corresponding
to tpk . (We use here the fact that signing does not require knowledge of the
prime factors of N .) A maintains the state information St = (V, `, L,Σ) of the
TSign procedure. Once F is done querying its oracle, it will output its forgery
σ′ = ((i′, Li′ ,Σi′), (j

′, Lj′ ,Σj′), δ′) for edge {i′, j′}. (We again assume without
loss of generality that i′ < j′.) Let G = (V,E) be the graph defined by F’s signa-

ture queries, and let G̃ = (V, Ẽ) denote its transitive closure. Let E1 denote the
event that σ′ is a certificate-recycling forgery (i.e. Li′ = L(i′) and Lj′ = L(j′)),
and let E2 be the event that δ′ ≡ ±δ where δ ≡ `(i′)`(j′)−1 mod N . If σ′ is not
a valid forgery, or in the event that E1 ∨ E2, algorithm A gives up. Otherwise,
it computes and returns r = gcd(δ + δ′, N), which is a factor of N because
δ and δ′ are different square roots of L(i′)L(j′)−1 mod N . This completes the
description of factoring algorithm A.

With regard to the analysis, it is tempting to say that since `(i′) and `(j′) were
chosen at random, with probability 1/2 A now has two square roots δ and δ′

such that δ 6≡ ±δ′ mod N , enabling it to factor N . This argument would be
correct if the forger were only given L(i′) and L(j′), without having any further
information on exactly which root A knows. However, by signing edges involving
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nodes i′ or j′, algorithm A might have given away some additional information
about its choices for `(i′) and `(j′). It is crucial to the security of the scheme
that this information doesn’t help the forger in creating a forgery with edge label
δ′ ≡ ±δ, as this would annihilate A’s advantage in factoring N . Fortunately, it
turns out that the exact value of δ remains information-theoretically hidden
from the forger as long as {i′, j′} is not in the transitive closure of the signed
edges. The crucial fact, which we will justify later, is that

Pr
[
E2 |E1 ∧Exptu-cma

Fact-TS ,F(k) = 1
]

=
1

2
. (4.4)

Given this, we have

Advfact
Kfact,A

(k) ≥ Pr
[
Exptu-cma

Fact-TS ,F(k) = 1 ∧E1 ∧E2

]

= Pr
[
E2 |E1 ∧Exptu-cma

Fact-TS ,F(k) = 1
]

·Pr
[
E1 ∧Exptu-cma

Fact-TS ,F(k) = 1
]

=
1

2
· Pr

[
E1 ∧Exptu-cma

Fact-TS ,F(k) = 1
]
.

The description of algorithm B breaking SS is very similar to the description of
algorithm B in the proof of Theorem 4.5. Details are omitted. As in that proof
we will have

Advuf-cma
SS ,B (k) ≥ Pr

[
E1 ∧Exptu-cma

Fact-TS ,F(k) = 1
]
.

Putting the above together we have

Advtu-cma
Fact-TS ,F(k) = Pr

[
E1 ∧Exptu-cma

Fact-TS ,F(k) = 1
]

+ Pr
[
E1 ∧Exptu-cma

Fact-TS ,F(k) = 1
]

≤ 2 ·Advfact
Kfact,A

(k) + Advuf-cma
SS ,B (k)

as desired. It remains to justify Equation (4.4).

Let G = (V,E) be the graph defined by the forger’s signature queries, and let

G̃ = (V, Ẽ) be the transitive closure of G. We represent A’s secret information
by a random variable ` that is distributed uniformly over Secrets, the set of all
functions from V to Z

∗
N . The forger’s view consists of a function L assigning a

square modulo N to each node in V , and a function ∆ assigning an edge label
in Z

∗
N to each edge in Ẽ. (We ignore the standard digital signatures on the

node certificates, as they are irrelevant for this analysis.) However, not just any
pair of functions 〈L,∆〉 can occur as the forger’s view. We say that forger view
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〈L,∆〉 is consistent with ` ∈ Secrets (and vice versa that ` is consistent with
〈L,∆〉) if and only if

L(i) ≡ `(i)2 mod N for all i ∈ V (4.5)

∆(i, j) ≡ `(i)`(j)−1 mod N for all {i, j} ∈ Ẽ , i < j (4.6)

The set of all possible forger views Views can then be defined as the set of
all pairs 〈L,∆〉 that are consistent with some ` ∈ Secrets. The actual view of
the forger is a random variable View distributed over Views as induced by
`. The following lemma states that for every 〈L,∆〉 ∈ Views and for every

{i′, j′} 6∈ Ẽ, any square root δ of L(i′)L(j′)−1 mod N is equally likely to be
δ ≡ `(i′)`(j′)−1 mod N , the root A has “in mind”, when given only View =
〈L,∆〉, and hence that no forger, on input only View, can predict δ with higher
probability of success than random guessing.

Equation (4.4) follows easily from the following lemma. Its proof completes
the proof of Theorem 4.6.

Lemma 4.7 For any 〈L,∆〉 ∈ Views, for any {i′, j′} 6∈ Ẽ and for any δ ∈ Z
∗
N

with δ2 ≡ L(i′)L(j′)−1 mod N :

Pr [δ ≡ δ mod N |View = 〈L,∆〉] =
1

4
. (4.7)

Proof: Since the outcome of all random variables is uniquely determined by
the signer’s choice for `, we can reduce all probabilities on random variables to
the probability of making some particular choice for `. For example, if we define
Cons(〈L,∆〉) ⊆ Secrets to be the set of all ` ∈ Secrets consistent with 〈L,∆〉,
then we can replace Pr[View = 〈L,∆〉] with Pr[` ∈ Cons(〈L,∆〉)]. Using this
fact and some basic probability theory, we can write

Pr [δ = δ |View = 〈L,∆〉]
= Pr [δ = δ ∧ View = 〈L,∆〉 |View = 〈L,∆〉]
= Pr [δ = δ ∧ ` ∈ Cons(〈L,∆〉) | ` ∈ Cons(〈L,∆〉)]
= Pr [` ∈ Cons(〈L,∆〉) | δ = δ ∧ ` ∈ Cons(〈L,∆〉)]

·Pr [δ = δ ∧ ` ∈ Cons(〈L,∆〉)]
Pr [` ∈ Cons(〈L,∆〉)]

= 1 · Pr [δ = δ ∧ ` ∈ Cons(〈L,∆〉)]
Pr [` ∈ Cons(〈L,∆〉)] . (4.8)
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We want to find a numerical expression for the last two factors in Equation (4.8).
Because ` is uniformly distributed over Secrets, the probability that ` ∈ S ⊆
Secrets is simply the number of elements in S divided by |Secrets| = ϕ(N)

|V |
.

We first try to find an expression for the number of elements in Cons(〈L,∆〉).
For ` to be consistent with forger view 〈L,∆〉, it has to satisfy the system of
equations given by (4.5) and (4.6). Considering only equations (4.5), there are
four possibilities for `(i) left for every i ∈ V , namely the four square roots of
L(i). Equations (4.6) impose additional restrictions on `. Many of these are
linearly dependent, though. In order to count the actual number of possible
solutions, we’d like to replace (4.6) with an equivalent but linearly independent
set of equations.

Let c be the number of disjoint components Vk ⊂ V in the transitively
closed graph G̃ = (V, Ẽ). If we define one node rk in each component Vk to be
the reference node for that component, and denote the reference node in the
component of node i as R(i), then the equations in the following system are
clearly linearly independent:

∆(i, R(i)) ≡ `(i)`(R(i))
−1

mod N for all i ∈ V \ {rk | k = 1 . . . c}. (4.9)

At the same time, they also form a system equivalent to (4.6), because every
equation in (4.6) is either contained in (4.9), or can be written as the quotient of
two equations in (4.9). The equations in (4.9) imply that once ` is fixed for the
c reference nodes, ` is completely defined. Together with Equation (4.5), that
leaves c entries of ` to be chosen freely from four values, so

Pr [` ∈ Cons(〈L,∆〉)] =
4c

ϕ(N)
|V | . (4.10)

To what amount does the addition of the requirement δ = δ restrict our choices
for ` ? This comes down to adding

`(i′)`(j′)
−1 ≡ δ mod N

to the systems given by (4.5) and (4.9), or equivalently, adding the equation

`(R(i′)) ≡ δ ·∆(i′, R(i′))−1 ·∆(j′, R(j′)) · `(R(j′)) mod N

which directly links `(R(i′)) to the choice for `(R(j′)). So now there are only
c− 1 entries of ` left to choose, giving

Pr [δ = δ ∧ ` ∈ Cons(〈L,∆〉)] =
4c−1

ϕ(N)
|V | . (4.11)

Substituting the factors in Equation (4.8) with Equations (4.10) and (4.11)
yields Equation (4.7), thereby proving the lemma.
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4.6.2 The DL1m-TS Scheme

Micali and Rivest’s DL-TS scheme [MR02b] uses two generators, which is impor-
tant to their security proof. The underlying ideas trace back to Okamoto’s two-
generator-based OkCL-SI scheme [Oka93] (see Figure 3.18) and its proof of secu-
rity against impersonation under active attack. However, Schnorr’s Schnorr -SI
scheme [Sch90] (see Figure 3.21), which uses only a single generator, is sim-
pler, more natural and has lower cost, particularly in size of secret keys. We
ask whether there is an analogous single-generator-based transitive signature
scheme. We answer this in the affirmative, presenting DL1m-TS , which is a
simpler and somewhat more natural single-generator based version of DL-TS ,
offering some performance improvements. However, while the proof of security
of DL-TS relied only on the standard hardness of discrete logarithms assump-
tion, the proof of security of DL1m-TS relies on the hardness of the one-more
discrete logarithm problem (see Section 2.3.2). This is again analogous to the
situation for identification schemes. Okamoto proved his scheme secure under
the standard hardness of discrete logarithm assumption, while the proof of se-
curity of Schnorr’s scheme (which remained an open problem for a while) is
based on the hardness of the one-more discrete logarithm problem [BP02]. The
DL1m-TS scheme is similar to RSA-TS .

In Section 2.3.2, we introduced discrete logarithm group generators Kdlog

as randomized polynomial-time algorithms that on input 1k output a tuple
(G, g, q), where q is an odd prime, G is (the compact description of) a cyclic
group of order q, and g is a generator of G. We do not attempt to pin down
exactly how the generator operates. In particular there are many classes of
groups (of prime order) which could be used. One example is that 2q + 1 is a
prime and G is the subgroup of quadratic residues of Z

∗
2q+1. Another possibility

is elliptic curve groups. This makes our results more general.

The scheme. We associate to any cyclic group generator Kdlog and any standard
digital signature scheme SS = (SKg,SSign,SVf) a transitive signature scheme
DL1m-TS = (TKg,TSign,TVf,Comp) defined as follows:

• TKg(1k) proceeds as in RSA-TS with the following changes:

(1.2) Run Kdlog(1
k) to get a triple (G, g, q)

(1.3) Output tpk = (G, g, q, spk) as the public key and

(1.4) tsk = (G, g, q, ssk) as the secret key.

• The signing algorithm TSign maintains state St = (V, `, L,Σ) where V,Σ
are as in RSA-TS , `: V → Zq and L: V → G. When invoked on inputs
tsk , i, j, it proceeds as the TSign algorithm of RSA-TS except for the fol-
lowing changes:
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(2.2) If i 6∈ V then

(2.3) V ← V ∪ {i} ; `(i)
R← Zq ; L(i)← g`(i)

(2.5) If j 6∈ V then

(2.6) V ← V ∪ {j} ; `(j)
R← Zq ; L(j)← g`(j)

(2.8) δ ← `(i)− `(j) mod q.

• TVf, on input tpk = (G, g, q, spk), nodes i, j and a candidate signature
σ, proceeds as the TVf algorithm of the RSA-TS scheme, except for the
following change:

(3.4) If gδ ≡ LiL
−1
j then return 1 else return 0.

• The composition algorithm Comp takes tpk , nodes i, j, k and signatures
σ1 and σ2, and proceeds as the Comp algorithm of RSA-TS except for the
following changes. In line (4.3) the computation of δ−1

1 is in G rather than
being modulo N , and similarly for line (4.4). Also line (4.5) is replaced
with

(4.5) δ ← δ1 + δ2 mod q.

This scheme offers some performance benefits compared to DL-TS , as indicated
in Figure 4.1, namely a reduced signature size and composition time.

As the above indicates, this scheme is very similar to RSA-TS , replacing
“xe mod N” (with x ∈ Z

∗
N ) by “gx” (with x ∈ Zq). Accordingly a proof similar

to the one of Proposition 4.2 can be used to show that DL1m-TS satisfies the
correctness requirement of Definition 4.1, and the following security result can
be established by a proof analogous to that of Theorem 4.5, with the role of Inv

played by DLog.

Theorem 4.8 Let Kdlog be a discrete logarithm group generator and let SS =
(SKg,SSign,SVf) be a SS scheme. Let DL1m-TS be the TS scheme associated to
them as defined above. If the one-more discrete logarithm problem associated to
Kdlog is hard and SS is unforgeable under adaptive chosen-message attack, then
DL1m-TS is transitively unforgeable under adaptive chosen-message attack.

4.6.3 The Gap-TS Scheme

As indicated in Section 4.1.3, the Gap-TS scheme is inferior to the DL1m-TS
scheme, requiring stronger assumptions and yet providing poorer performance.
We describe it because, unlike DL1m-TS , it is amenable to the hash-based mod-
ification we describe later, leading to the scheme having the shortest signatures
amongst all the schemes we have discussed.

As introduced in Section 2.3.2, Gap Diffie-Hellman groups are cyclic groups
in which the decisional Diffie-Hellman (DDH) problem is efficiently solved by
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the Sddh algorithm, while the computational Diffie-Hellman (CDH) problem is
hard.

The scheme. We associate to any Gap-DH group specifier (Kgap,Sddh) and any
standard digital signature scheme SS = (SKg,SSign,SVf) a transitive signature
scheme Gap-TS = (TKg,TSign,TVf,Comp) defined as follows:

• TKg(1k) proceeds as in RSA-TS with the following changes:

(1.2) (Ĝ, g, q)
R← Kgap(1k) ; a

R← Zq ; u← ga

(1.3) Output tpk = (Ĝ, q, g, u, spk) and tsk = (Ĝ, q, g, u, ssk).

Note that a is discarded.

• The signing algorithm TSign maintains state St = (V, `, L,Σ) where V,Σ
are as in RSA-TS and `, L: V → Ĝ. When invoked on inputs tsk , i, j,
it proceeds as the TSign algorithm of RSA-TS except for the following
changes:

(2.2) If i 6∈ V then

(2.3) V ← V ∪ {i} ; bi
R← Zq ; `(i)← ubi ; L(i)← gbi

(2.5) If i 6∈ V then

(2.6) V ← V ∪ {j} ; bj
R← Zq ; `(j)← ubj ; L(j)← gbj

(2.8) δ ← `(i)`(j)−1.

• TVf, on input tpk = (Ĝ, q, g, u, spk), nodes i, j and a candidate signature
σ, proceeds as the TVf algorithm of the RSA-TS scheme, except for the
following change:

(3.4) If Sddh(Ĝ, q, g, u, LiL
−1
j , δ) = 1 then return 1 else return 0.

That is, it checks that δ is the solution to the CDH problem (g, u, LiL
−1
j ).

• The composition algorithm Comp takes tpk , nodes i, j, k and signatures
σ1 and σ2, and proceeds as the Comp algorithm of RSA-TS except for the
following changes. In line (4.3) the computation of δ−1

1 is in Ĝ rather than
being modulo N , and similarly for line (4.4). Also line (4.5) is replaced
with

(4.5) δ ← δ1δ2

As usual, this scheme can be shown to meet Definition 4.1. The security result
is the following.
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Theorem 4.9 Let (Kgap,Sddh) be a gap DH group specifier and let SS = (SKg,
SSign,SVf) be a SS scheme. Let Gap-TS be the TS associated to them as de-
fined above. If the one-more CDH problem associated to Kgap is hard and SS is
unforgeable under adaptive chosen-message attack, then Gap-TS is transitively
unforgeable under adaptive chosen-message attack.

The proof is very similar to that of Theorem 4.5. The one-more CDH adversary
A gets input Ĝ, g, q, u and runs the given forger F on input tpk = (Ĝ, g, q, u, spk),
where it generates (spk , ssk) via SKg(1k). It then proceeds just like the one-more
RSA adversary in the proof of Theorem 4.5, except that when the latter calls
Inv(·), the one-more CDH adversary calls its Cdh(·) oracle, and operations

modulo N are now operations in Ĝ.

4.7 Eliminating Node Certificates via Hashing

The above schemes use the node certification technique, and the standard sig-
natures involved are a significant factor in the cost of the scheme. Here we show
how, for some of the above schemes, one can eliminate node certificates by spec-
ifying the public label of a node i as the output of a hash function applied to i.
No explicit certification is attached to this value. Rather, we will be able to show
that the edge label provides an “implicit authentication” of the associated node
label that suffices to be able to prove that the scheme is transitively unforgeable
under adaptive chosen-message attack, in a model where the hash function is a
random oracle. Let us now illustrate this by presenting the schemes.

4.7.1 The RSAH -TS Scheme

To any RSA key generator Krsa, we associate a transitive signature scheme
RSAH -TS = (TKg,TSign,TVf,Comp) defined as follows:

• TKg(1k) does the following

(1.1) Run Krsa(1
k) to get a triple (N, e, d)

(1.2) Output tpk = (N, e) as the public key and tsk = (N, d) as the
secret key.

Now the following algorithms all have oracle access to a random func-
tion HN : N→ Z

∗
N . Note that unlike the RSA-TS scheme, the decryption

exponent d is not discarded, but it is part of the secret key.

• The (stateless) signing algorithm TSign, when invoked on inputs tsk , i, j,
meaning when asked to produce a signature on edge {i, j}, it does the
following:
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(2.1) If i > j then swap(i, j)

(2.2) δ ← [HN (i)HN (j)−1]d mod N

(2.3) Return δ as the signature of {i, j}.

• TVf, on input tpk = (N, e), nodes i, j and a candidate signature δ, proceeds
as follows:

(3.1) If i > j then swap(i, j)

(3.2) If δe ≡ HN (i)HN (j)−1 mod N then return 1 else return 0.

• The composition algorithm Comp takes tpk , nodes i, j, k and signatures δ1
and δ2, and computes a composed signature for edge {i, k} as follows:

(4.1) If i > k then swap(i, k) ; swap(δ1, δ2)

(4.2) If i > j then δ1 ← δ−1
1 mod N

(4.3) If j > k then δ2 ← δ−1
2 mod N

(4.4) δ ← δ1δ2 mod N

(4.5) Return δ as the signature for {i, k}.

As illustrated by Figure 4.1, this brings some significant performance gains over
RSA-TS , particularly with regard to signature size. Regarding security, in the
experiment Exptu-cma

RSAH -TS ,F(k), we consider HN : N→ Z
∗
N to be chosen at random

after the public and secret keys (defining N) have been chosen. The TSign, TVf,
and Comp algorithms, as well as the adversary, then get oracle access to HN . In
this random oracle model, we have the following.

Theorem 4.10 Let Krsa be an RSA key generator and let RSAH -TS be the
transitive signature scheme associated to Krsa as defined above. If the one-more
RSA problem associated to Krsa is hard, then RSAH -TS is transitively unforge-
able under adaptive chosen-message attack in the random oracle model.

Proof: Suppose we are given a poly(k)-time adversary F for RSAH -TS . We
construct a poly(k)-time one-more RSA adversary A such that for all k

Advtu-cma
RSAH -TSF(k) ≤ Adv1m-rsa

Krsa,A (k) . (4.12)

The theorem follows from the assumption that the one-more RSA-inversion
problem associated to Krsa is hard. It remains to describe A.

The one-more RSA adversary A gets inputs N, e and has access to an inversion
oracle Inv(·) and a challenge oracle Chall. It lets tpk = (N, e) and runs F on
input tpk . It will itself provide answers, both to F’s queries to its random oracle
and to F’s signature queries.

Adversary A uses the function L(i) as a table that represents HN . When a query
HN (i) is made by F, adversary A does the following:
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If i 6∈ V then V ← V ∪ {i} ; L(i)
R← Chall() ; ∆(i, i)← 1

Return L(i) to F,

A answers F’s signature queries as in the proof of Theorem 4.5, but omitting
lines (5.4) and (5.7) and replacing line (5.18) by :

(5.18) δ ← ∆(i, j) ; Return δ to F.

At the end of its execution, F outputs a forgery δ′ for edge {i′, j′}. We can
assume without loss of generality that F queried the hash oracle on i′ and j′

(and hence that i′, j′ ∈ V ), because if it didn’t A can query the hash oracle
itself after F outputs its forgery. The remaining actions of A, and its analysis,
are just as in the proof of Theorem 4.5, where the elements of V that were not
involved in signature queries (but were queried to the random oracle only) are
treated as singleton components. Also, the event E defined there does not exist
here and one proceeds as in the case that E does not happen. This completes
the proof.

4.7.2 The FactH -TS Scheme

To eliminate node certificates from the Fact -TS scheme, it is natural to want
to let L(i) = HN (i), where HN is some public hash function. When trying to
implement this function in practice, however, the same problem emerges as when
trying to transform factoring-based SI schemes into IBI schemes in Section 3.5.1.
We could consider setting L(i) = HN (i)2 mod N where HN has range Z

∗
N , but

this reveals a square root of L(i) which makes the scheme insecure. Instead,
we let the signer choose N to be a Blum integer (i.e. N = pq with p and q
primes such that p ≡ q ≡ 3 mod 4). Now we will use as HN a hash function
with range Z

∗
N [+1], and let `(i) be a random square root of either HN (i) or

−HN (i), whichever is a square. Since the Jacobi symbol can be computed in
polynomial time given N , such a hash function can be easily built starting from
a cryptographic hash function.

The FactH -TS scheme. We associate to any given Blum modulus generator
Kblum (as defined in Section 2.3.1) a transitive signature scheme FactH -TS =
(TKg,TSign,TVf,Comp) defined as follows:

• TKg, on input 1k, runs Kblum(1k) to obtain (N, p, q) and outputs tpk = N
as the public key and tsk = (N, p, q) as the matching secret key. All the
following algorithms are now assumed to have oracle access to a function
HN : N

∗ → Z
∗
N [+1].

• TSign maintains state St = (V, `) where V ⊆ N is the set of all queried
nodes and the function `: V → Z

∗
N assigns to each node i ∈ V a secret
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label `(i) ∈ Z
∗
N . When invoked on inputs tsk , i, j, meaning when asked to

produce a signature on edge {i, j}, it does the following:

If i > j then swap(i, j)

If i 6∈ V then V ← V ∪ {i} ; `(i)
R←

√
±HN (i) mod N

If j 6∈ V then V ← V ∪ {j} ; `(j)
R←

√
±HN (j) mod N

δ ← `(i)`(j)−1 mod N ,

where the notation x
R← √±y mod N means that x is chosen at random

from the four square roots of y or −y mod N , whichever is a square modulo
N . (These roots can be efficiently computed using the prime factors p and
q.) Return δ as the signature on {i, j}.

• TVf, on input tpk = N , nodes i, j and a signature δ, first swaps i and
j if i > j. It returns 1 if HN (i) · HN (j)−1 ≡ ±δ2 mod N and returns 0
otherwise.

• The composition algorithm Comp is identical to that of RSAH -TS .

A proof by induction can be used to show the following.

Proposition 4.11 The FactH -TS transitive signature scheme described above
satisfies the correctness requirement of Definition 4.1.

Computational costs. Since half of the elements in Z
∗
N have Jacobi symbol

+1, a hash function evaluation requires the computation of two Jacobi symbols
on average, which takes time quadratic in |N |. Computing square roots, how-
ever, is cubic in |N |, so this will dominate the cost of generating signatures.
Verification and composition of signatures involve multiplications, inverses and
Jacobi symbols mod N , all of which are operations quadratic in |N |.
Security. We prove breaking the FactH -TS scheme equivalent to factoring in
the random oracle model. This means that in the experiment Exptu-cma

FactH -TS ,F(k)
used to define the advantage of an adversary F, the function HN is assumed to
be chosen at random from the space of all functions mapping {0, 1}∗ to Z

∗
N [+1].

The result is stated as a theorem below.

Theorem 4.12 Let Kblum be a Blum modulus generator. Let FactH -TS be the
associated transitive signature scheme as defined above. If the factoring problem
associated to Kblum is hard, then FactH -TS is transitively unforgeable under
adaptive chosen-message attack in the random oracle model.

Proof: Suppose we have a polynomial-time tu-cma forger F for FactH -TS . We
will give a factoring algorithm A that uses F as a subroutine to factor composite
numbers generated by Kblum. On input Blum integer N , A runs F on input
tpk = N , answering its random oracle queries for node i as
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If i 6∈ V then

`(i)
R← Z

∗
N ; s(i)

R← {−1,+1}; V ← V ∪ {i}
Return s(i) · `(i)2 mod N to F.

Half of the elements in Z
∗
N [+1] are squares with Legendre symbols +1 modulo

both p and q, while the other half are non-squares with Legendre symbols −1
modulo both p and q. For a Blum integer N , −1 belongs to the latter subset,
and every non-square in Z

∗
N [+1] can be written as the product of −1 times a

square mod N . Consequently, the output of the above algorithm follows the
same distribution as a truly random function from N to Z

∗
N [+1], as required.

A answers F’s signature queries as follows:

If i 6∈ V then

`(i)
R← Z

∗
N ; s(i)

R← {−1,+1}; V ← V ∪ {i}
If j 6∈ V then

`(j)
R← Z

∗
N ; s(j)

R← {−1,+1}; V ← V ∪ {j}
If i < j then return `(i) · `(j)−1 mod N
else return `(j) · `(i)−1 mod N .

Let F’s forgery be (i′, j′, δ′). Again, we assume without loss of generality that F
queried the random oracle on i′ and j′ before halting. Let E be the set of edges
for which F queried a signature and let G̃ = (V, Ẽ) be the transitive closure of
the graph G = (V,E). If F’s output is not a successful forgery, meaning that

either TVf(N, i′, j′, δ′) 6= 1 or {i′, j′} ∈ Ẽ, A aborts. If i′ < j′ then let δ ←
`(i′) · `(j′)−1 mod N , otherwise let δ ← `(j′) · `(i′)−1 mod N . If δ ≡ ±δ′ mod N ,
then A aborts, otherwise it outputs gcd(δ + δ′, N).
By arguments analogous to those in the proof of Theorem 4.6, A is successful
whenever it doesn’t abort. The advantage of the forger F is bounded by

Advtu-cma
FactH -TS ,F(k) ≤ 2 ·Advfact

Kblum,A(k) (4.13)

by a similar information-theoretic reasoning as in the proof of Theorem 4.6.

4.7.3 The GapH -TS Scheme

The discrete logarithm-based DL-TS and DL1m-TS schemes are not amenable to
a hash-based improvement because the discrete exponentiation function is not
trapdoor. For the Gap-TS scheme on the other hand, one can view a = logg(u) as
trapdoor information allowing to compute secret labels from public labels, giving
rise to the stateless and very compact (in terms of signature size) GapH -TS
scheme described below.

• The key generation algorithm TKg(1k) calls Kgap(1k) to generate a cyclic

group description Ĝ, its order q and a generator g. It chooses a
R← Zq
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and computes u ← ga. It outputs the public key tpk = (Ĝ, q, g, u) and

the corresponding secret key tsk = (Ĝ, q, g, a). All algorithms have oracle

access to a random function H
Ĝ

: N→ Ĝ.

• The (stateless) signing algorithm TSign, on input nodes i, j and secret key
tsk = (Ĝ, q, g, a), proceeds exactly as the TSign algorithm of RSAH -TS
but replacing line (2.2) by

(2.2) δ ←
[
H

Ĝ
(i) ·H

Ĝ
(j)−1

]a
.

• TVf, on input tpk = (Ĝ, q, g, u), nodes i, j and candidate signature δ, first

swaps i and j if i > j. It outputs 1 if Sddh(Ĝ, q, g, u,H
Ĝ
(i)H

Ĝ
(j)−1, δ) = 1,

or returns 0 otherwise.

• The Comp algorithm is the same as that of RSAH -TS , except that the
operations in lines (4.2), (4.3) and (4.4) are performed in Ĝ, rather than
modulo N .

Note that just like the short signature scheme of Boneh et al. [BLS01], an

edge signature under GapH -TS contains only a single element of Ĝ, which can
be represented in roughly 140 bits when using elliptic curves to achieve the same
security as a 1024-bit RSA modulus [LV01].

Proposition 4.13 The GapH -TS transitive signature scheme described above
is correct according to Definition 4.1.

Theorem 4.14 Let (Kgap,Sddh) be a Gap-DH group specifier and let H
Ĝ

: N→
Ĝ be a random oracle. The associated GapH -TS transitive signature scheme
described above is transitively unforgeable under adaptive chosen-message attack
under the one-more Gap-DH assumption associated to Kgap.

The proof of the security statement is very similar to that of RSAH -TS :
the one-more CDH adversary A gets Ĝ, g, q, u as input and runs the forger F on
input tpk = (Ĝ, g, q, u). It then proceeds exactly as the one-more RSA adversary

of Theorem 4.10, replacing all operations modulo N with operations in Ĝ, and
replacing Inv(·) calls with calls to the Cdh(·) oracle.

4.7.4 A General Construction

The similarities between the different transitive signature schemes are so strik-
ing that one could imagine – or even expect – a more general framework to
lie underneath. Indeed, following our work, Hohenberger [Hoh03] presented two
general constructions for (undirected) TS schemes that are provably secure if
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certain assumptions on the underlying algebraic group hold, but that make ab-
straction of the exact type of group being used. More specifically, she crystallizes
the intuition of schemes having multiple valid edge labels for one edge explained
on page 87 as weakly collision-resistant non-injective group homomorphisms and
proves that breaking the associated node-certificate-using TS scheme is equiv-
alent to either finding collisions in the group homomorphism, or breaking the
underlying SS scheme. Both Micali and Rivest’s DL-TS scheme and our Fact -TS
schemes are captured under this definition. Furthermore, she constructs a second
node-certificate-using TS scheme based on one-way group isomorphisms that is
provably secure under an associated one-more inversion assumption and the se-
curity of the underlying SS scheme, thereby capturing the RSA-TS and DL1m-TS
schemes. (Of these, only RSA-TS was claimed by [Hoh03], since DL1m-TS had
not been proposed yet.) Strictly speaking, the Gap-TS scheme is not covered by
this definition because the homomorphism is not computable without knowing
the secret key, but this can be fixed by weakening the computability requirement
to a samplability requirement.

In this section, we present a general construction that encompasses all TS
schemes obtained through our hash-based improvement (RSAH -TS , FactH -TS
and GapH -TS). One way of doing this would be to extend Hohenberger’s def-
initions of weakly collision-resistant non-injective group homomorphisms and
one-way group homomorphisms with a trapdoor notion, to construct a TS
scheme from each of these definitions, and to prove the first secure under the
collision-resistance of the homomorphism and the second under the associated
one-more assumption. This approach however would involve writing two proofs
from scratch, largely repeating the work of [Hoh03]. Instead, we put forward a
single definition of trapdoor samplable group homomorphisms, construct two TS
schemes based on it, one node-certification-based and the other hash-based, and
show that the security of the latter follows from the security of the former. By
observing that the RSA-TS , Fact -TS and Gap-TS schemes are secure under ap-
propriate assumptions, the security of the RSAH -TS , FactH -TS and GapH -TS
schemes under the same assumptions in the random oracle model follows.

In essence, trapdoor samplable group homomorphisms are a refinement of
trapdoor samplable relations as defined in Definition 3.5, where the relation
is a group homomorphism and an additional verifiability property is required.
This is not surprising, since the random-oracle-using technique to transform
node-certificate-based TS schemes into hash-based TS schemes is very similar
to the technique used by the cSI-2-IBI transform of Construction 3.7 to turn SI
schemes into IBI schemes. Both solve the problem of assigning a public value
(the public label for TS schemes, part of a public key for IBI schemes) to an
entity (a node in a graph for TS schemes, a user’s identity for IBI schemes) by
defining the value as the output of a hash function applied to the “name” of the
entity, and compute the entity’s secret using a piece of trapdoor information.
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The restriction to group homomorphisms is due to the transitive property that
requires algebraic manipulation of public labels; the verifiability property is used
in the verification algorithms of cSI schemes, but was not explicitly needed in
the cSI-2-IBI transform and hence it was not included in Definition 3.5.

Definition 4.15 A family of trapdoor samplable group homomorphisms TH is a
quadruple of polynomial time algorithms (THG,THSample,THVf,THInv) where:

• THG is a randomized algorithm that on input 1k outputs the description
〈ψ〉 of a group homomorphism ψ : G0 → G1 together with a trapdoor t.
We use multiplicative notation for both groups G0 and G1, and assume
that multiplication and inversion of elements in both groups are efficiently
computable given 〈ψ〉.

• the randomized THSample algorithm, on input 〈ψ〉, generates a tuple (x, y)
such that x is uniformly distributed over G0 and y = ψ(x).

• the verification algorithm THVf, on input 〈ψ〉, x, y, returns 1 if y = ψ(x)
and returns 0 otherwise.

• the THInv algorithm, on input a homomorphism description 〈ψ〉, the cor-
responding trapdoor t and an element y ∈ G1, returns a random element
of ψ−1(y) = {x ∈ G0 | ψ(x) = y}.

• all homomorphisms generated by THG are regular, meaning that |ψ−1(y)|
is equal for all y ∈ G1.

As in Definition 3.5, a requirement relating the hardness of inverting the ho-
momorphism to the value of the security parameter is not needed, since this will
be implied by the security of the originating node-certificate-based TS scheme.
Also, we do not assume that the forward direction of the homomorphism be
computable, either with or without the trapdoor information.

The following construction associates a node-certificate-based TS scheme to
any family of trapdoor samplable group homomorphisms and any SS scheme.

Construction 4.16 Let TH = (THG,THSample,THVf,THInv) be a family of
trapdoor samplable group homomorphisms as per Definition 4.15, and let SS =
(SKg,SSign,SVf) be a SS scheme. We associate to these a node-certificate-based
TS scheme NC -TS = (TKg,TSign,TVf,Comp) as follows:

• The key generation algorithm TKg(1k) runs THG(1k) to generate the
description 〈ψ〉 of a homomorphism ψ : G0 → G1 and corresponding
trapdoor t, and runs SKg(1k) to generate a standard signature key pair
(spk , ssk). It outputs tpk = (〈ψ〉, spk) as the public key and tsk = (〈ψ〉, ssk)
as the secret key. The trapdoor t is discarded.
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• The TSign algorithm maintains as state information a set of nodes V and
functions ` : V → G0, L : V → G1 and Σ : V → {0, 1}∗. When invoked
on inputs tsk = (〈ψ〉, ssk), i, j, it proceeds just like the RSA-TS algorithm,
except for the following changes:

(2.3) V ← V ∪ {i} ; (`(i), L(i))
R← THSample(〈ψ〉)

(2.6) V ← V ∪ {j} ; (`(j), L(j))
R← THSample(〈ψ〉)

(2.8) δ ← `(i)`(j)−1.

• The TVf algorithm, on input public key tpk = (〈ψ〉, spk), nodes i, j and
candidate signature σ = (C1, C2, δ), is the same as the TVf algorithm of
RSA-TS with the last line is changed to

(3.4) If THVf(〈ψ〉, δ, LiL
−1
j ) = 1 then return 1 else return 0.

• The Comp algorithm is identical to that of RSA-TS , except that operations
are performed in G0 instead of modulo N .

We now argue that the RSA-TS , Fact -TS and Gap-TS schemes are all special
instances of NC -TS . This is true for the RSA-TS scheme when considering homo-
morphism ψ : Z

∗
N → Z

∗
N : x 7→ xe mod N with description (N, e) and trapdoor

d. Since the homomorphism is efficiently computable, sampling and verifying
pairs is trivial. Inversion is done by raising to the power d modulo N . The regu-
larity property is also trivial because ψ is an automorphism. The Fact -TS scheme
can be seen as an instantiation of NC -TS with ψ : Z

∗
N → QRN : x 7→ x2 mod N

with description N and trapdoor (p, q). Sampling and verifying pairs is done by
computing the homomorphism, inversion is done by computing all four square
roots and selecting one of them at random. Finally, the Gap-TS scheme is iden-

tical to NC -TS when instantiated with ψ : Ĝ → Ĝ : x 7→ x(a−1 mod q) with
description 〈ψ〉 = (Ĝ, q, g, u) and trapdoor a = logg u. Sampling pairs can be

done by choosing r
R← Zq and outputting (gr, ur), verifying if y = ψ(x) for a

given (x, y) is done by using the Sddh algorithm to check that (g, u, y, x) is a
valid Diffie-Hellman tuple. The inverted homomorphism is computed by raising
to the power a in Ĝ.

The following construction shows how to base a hash-based TS scheme on a
family of trapdoor samplable group homomorphisms, capturing the RSAH -TS ,
FactH -TS and GapH -TS as special cases.

Construction 4.17 We associate to any family of trapdoor samplable group
homomorphisms TH = (THG,THSample,THVf,THInv) a hash-based transitive
signature scheme H -TS = (TKg,TSign,TVf) as follows:
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• The key generation algorithm TKg(1k) runs THG(1k) to generate a pair
(〈ψ〉, t). It outputs tpk = 〈ψ〉 as the public key tsk = (〈ψ〉, t) as the
secret key. The scheme also assumes the availability of a random oracle
H : N→ G1.

• The TSign algorithm maintains as state information a set of nodes V and
a function ` : V → G0. To sign edge {i, j}, it proceeds as follows:

If i > j then swap(i, j)

If i 6∈ V then `(i)
R← THInv(〈ψ〉, t,H(i))

If j 6∈ V then `(j)
R← THInv(〈ψ〉, t,H(j))

δ ← `(i)`(j)−1 ; Return δ.

• On input public key tpk = 〈ψ〉, nodes i, j and candidate signature δ as in-
put, the verification algorithm TVf returns 1 if THVf(〈ψ〉, δ,H(i)H(j)−1) =
1 and returns 0 otherwise.

• The Comp algorithm, on input public key tpk = 〈ψ〉, signatures δ1, δ2 and
nodes i, j, k, computes a composed signature for {i, k} as:

If i > k then swap(i, k) ; swap(δ1, δ2)
If i > j then δ1 ← δ−1

1

If j > k then δ2 ← δ−1
2

δ ← δ1 · δ2 ; Return δ.

The RSAH -TS and GapH -TS schemes are instances of H -TS for the same
reasons that RSA-TS and Gap-TS are instances of NC -TS . The case of Fact -TS
asks for a bit more explanation due to the small changes we had to apply
to the scheme to make the random oracle implementable in the real world.
Consider the group G of two-element sets {a,−a mod N} where a ∈ QRN for a
Blum modulus N , and with group operation {a,−a mod N} · {b,−b mod N} =
{ab mod N,−ab mod N}. The FactH -TS scheme can be seen as a “compact” but
equivalent variant of the H -TS scheme when instantiated with homomorphism
ψ : Z

∗
N → G : x 7→ {x2 mod N,−x2 mod N}. Indeed, the public labels in the

FactH -TS scheme are only a single element of Z
∗
N , but can be seen as a compact

representation of the set containing both the element itself and its negative. The
corresponding node-certificate-based scheme (the instantiation of NC -TS with
the above homomorphism ψ) is easily seen to be secure, because signatures
under it contain even less information than in the Fact -TS scheme, while the
relaxed verification equation at most doubles the advantage of an adversary.
As a consequence, the following theorem applies to all three hash-based TS
schemes.
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Theorem 4.18 Let NC -TS be the certificate-based transitive signature scheme
associated to a familty of trapdoor samplable group homomorphisms TH as per
Construction 4.16, and let H -TS be the hash-based TS scheme associated to TH
as per Construction 4.17. If NC -TS is transitively unforgeable under adaptive
chosen-message attack, then H -TS is transitively unforgeable under adaptive
chosen-message attack in the random oracle model.

Proof: Given adversary A attacking H -TS , we construct an adversary F at-
tacking NC -TS as follows. Algorithm F is given input tpk = (〈ψ〉, spk) and has
access to a signing oracle TSignNC-TS (·, ·). (To avoid confusion between A’s and
F’s signing oracles, we write the scheme in subscript.) F’s strategy will be to sim-
ulate A’s environment by using public labels in signatures from the TSignNC-TS

oracle as answers to A’s hash queries. A small technical problem that must be
overcome, however, is that A can query for the hash value of a node i before it
was involved in a signature query, while the only way for F to obtain the public
label of a node i is by querying for the signature on a “dummy” edge {i, j}. To
make sure that A’s forgery does not coincide with a dummy edge, each node in
A’s view corresponds to a pair of nodes in F’s view. Algorithm F maintains a
“renaming” function R : N→ N that represents the mapping from A’s nodes to
F’s nodes. More specifically, F initializes set V to ∅ and runs A on input 〈ψ〉,
answering its random oracle queries H(i) as:

(1.1) If i 6∈ V then
(1.2) V ← V ∪ {i} ; R(i)← 2 · |V | // node renaming function

(1.3) (C1, C2, δ)← TSignNC-TS (R(i), R(i) + 1)
(1.4) Parse C1 as (R(i), Li,Σi) ; L(i)← Li

(1.5) Return L(i)

and answering A’s TSignH -TS (i, j) queries as:

(2.1) If i 6∈ V then
(2.2) V ← V ∪ {i} ; R(i)← 2 · |V |
(2.3) (C1, C2, δ)← TSignNC-TS (R(i), R(i) + 1)
(2.4) Parse C1 as (R(i), Li,Σi) ; L(i)← Li

(2.5) If j 6∈ V then
(2.6) V ← V ∪ {j} ; R(j)← 2 · |V |
(2.7) (C1, C2, δ)← TSignNC-TS (R(j), R(j) + 1)
(2.8) Parse C1 as (R(j), Lj ,Σj) ; L(j)← Lj

(2.9) (C1, C2, δ)← TSignNC-TS (R(i), R(j))
(2.10) If ((i > j) and (R(i) > R(j))) or ((i < j) and (R(i) < R(j)))
(2.11) then return δ else return δ−1

When A outputs its forgery δ for edge {i, j} (assuming without loss of generality
that i < j), then F outputs δ as its own forgery for edge {R(i), R(j)} if R(i) <
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R(j), or δ−1 if R(i) > R(j). If A did not previously query its TSignH -TS oracle
for a signature of {i, j}, then F definitely never queried its TSignNC-TS oracle
for a signature of {R(i), R(j)} on line (2.9), and neither did it do so anywhere
else, because the queries on lines (1.3), (2.3) and (2.7) always involve one even
and one odd node label, while R(i) and R(j) are both even. In conclusion, F’s
forgery is valid if A’s forgery is valid, and hence we can bound the advantage of
A as

Advtu-cma
H -TS ,A(k) ≤ Advtu-cma

NC-TS ,F(k).

Combining Theorem 4.18 with the security results of the RSA-TS , Fact -TS
and Gap-TS schemes as stated in Theorems 4.5, 4.6 and 4.9, yields that the
RSAH -TS , FactH -TS and GapH -TS schemes are transitively unforgeable under
adaptive chosen-message attack in the random oracle model assuming the hard-
ness of the one-more RSA, factoring and one-more CDH problems, respectively.

4.8 Conclusion

In this chapter, we revisited the concept of transitive signatures as introduced
by Micali and Rivest [MR02b]. We started off by answering an open question
raised by Micali and Rivest regarding the security of an RSA-based scheme
against adaptive adversaries. We then introduced new provably secure schemes
based on factoring and Gap Diffie-Hellman groups, and proposed a hash-based
technique that eliminates the need for so-called node certificates, thereby dras-
tically reducing the signature length. We applied this technique to the schemes
based on RSA, factoring and Gap-DH groups, and we further generalized the
technique to any family of trapdoor samplable group homomorphism.

Part of the results contained in this chapter were published in the proceed-
ings of the ASIACRYPT 2002 conference [3].



Chapter 5

Conclusion

In this thesis, we presented new provably secure schemes for a number of crypto-
graphic problems, and provided security proofs for existing schemes that lacked
such proof. We employed commonly accepted security notions wherever pos-
sible, and in the few occasions that we found such notions to be missing, we
defined new, meaningful yet feasible security notions. We also presented abstract
constructions and transformations that greatly simplify the task of proving the
security of concrete schemes, and that moreover contribute to our understanding
of the general principles underlying related schemes.

More specifically, we discussed identity-based identification and signature
schemes in Chapter 3, and transitive signature schemes in Chapter 4. We sum-
marize our contributions to these areas in Sections 5.1 and 5.2, respectively. We
discuss a couple of interesting open problems in Section 5.3.

5.1 Identity-based Identification Schemes

A standard identification (SI) scheme enables a prover knowing secret key sk to
interactively identify itself to a verifier knowing the corresponding public key pk ,
while eavesdroppers or even active adversaries cannot deduce any useful informa-
tion from the conversation. To implement public-key cryptography in practice,
one has to provide a secure way to associate individual users to their public
keys, a problem that is commonly solved by setting up an expensive public-key
infrastructure. Identity-based cryptography [Sha84] alleviates this problem by
using the user’s identity as his public key, and having the corresponding secret
key usk delivered to the user by a central trusted key generation center.

Security notions. While numerous identity-based identification (IBI) schemes
have been proposed in the literature, and while solid security notions do exist for
SI schemes, prior to our work no security notions were known for IBI schemes
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that take into account attacks from inside users of the system, possibly even
colluding with other users. Consequently, all known IBI schemes were proven
secure in weaker models, if at all.

We filled this somewhat surprising hiatus by providing adequate security
notions for IBI schemes. We first paused to show this definition is easily met
by a certificate-based IBI scheme based on an SI scheme and a standard signa-
ture (SS) scheme. This points to the fact that, unlike identity-based encryption
schemes [BF01], trival solutions exist for IBI schemes, and that the goal of
special-purpose IBI schemes is to outperform the trivial solution.

General transforms. Instead of manually rewriting a proof from scratch
for every IBI scheme ever proposed, we defined a class of SI schemes called
convertible SI (cSI) schemes and demonstrated a general random-oracle-using
transformation cSI-2-IBI that when applied to a secure cSI scheme results in a
secure IBI scheme (see Theorem 3.8).

Through known transformations by Fiat and Shamir [FS86] and Dodis et
al. [DKXY03], we build an entire framework encompassing SI, IBI, SS and IBS
schemes. We view schemes as occurring in families, as depicted in Figure 3.1.
Under certain conditions, a cSI scheme Name-SI can be transformed into a
SS scheme Name-SS through the fs-I-2-S transform [FS86], which in turn can
be transformed into an IBS scheme Name-IBS through a generalization of the
transform of Dodis et al. [DKXY03] that we call the cSS-2-IBS transform,
all while preserving security. The Name-IBS scheme thus obtained coincides
with the scheme obtained by applying the fs-I-2-S transform to the IBI scheme
Name-IBI = cSI-2-IBI(Name-SI ) resulting from our transform, thereby complet-
ing the picture of Figure 3.1.

While the above relations imply that the fs-I-2-S transformation is security-
preserving when applied to an IBI scheme that was obtained as the cSI-2-IBI
transform of a cSI scheme, we observed that this is not true for IBI schemes
in general. We fixed this problem by presenting the efs-IBI-2-IBS transform and
proving that it does preserve security for general IBI schemes.

Applying the framework. These tools in hand, we went through two decades
of literature on SI, IBI, SS and IBS schemes, delivering security proofs for pre-
viously unproven schemes and for new schemes that we surface from these. An
overview of our results is given in Table 3.2.

We found that a large number of schemes based on the hardness of factoring
[FS86, FFS88, OO90, OS90] are actually special cases of a more general family
of schemes that we called the ItR (for “iterated root”) family. Their security as
IBI schemes follows from our transform. We also found another scheme based
on factoring, the FF -SI scheme, to be amenable to the identity-based setting
through our transform.

From the famous RSA-based IBS scheme by Shamir [Sha84], we surfaced
the Sh-SI scheme and proved that it is secure under passive attack, but in-
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secure under active attack. This is sufficient, however, to prove the security
of the Sh-IBS scheme through our framework, which has been an open prob-
lem since its introduction in 1984. We also present a modified Sh∗-SI scheme
that is secure under active and concurrent attacks as well. The security of the
GQ -SI [GQ89] and OkRSA-SI [Oka93] schemes was already well-studied, and
extends to the identity-based case through our framework. We found one last
RSA-based scheme by Girault [Gir90, SSN98] to be insecure, and showed an
attack breaking all schemes in the family.

Following the renewed interest in identity-based cryptography after the in-
troduction of pairings on elliptic curves to cryptography [JN03], new pairing-
based IBS schemes have been proposed [SOK00, CC03, Yi03, Pat02, Hes03].
Barring the scheme of Cha and Cheon [CC03], none of these were proven secure
in a full-fledged identity-based model (although the security of Hs-IBS [Hes03]
follows from Dodis et al. [DKXY03]). We surfaced the provably secure Hs-SI
and ChCh-SI schemes such that their IBS siblings coincide with the schemes
presented by Hess [Hes03] and independently by Cha and Cheon [CC03] and
Yi [Yi03], respectively. We also surfaced the SOK -SI scheme of which the IBS
sibling is a close relative of, but not identical to the scheme presented by Sakai et
al. [SOK00]. We proved the SOK -SI scheme to be secure under passive attack,
from which the security of SOK -IBS follows, but the security of the original
scheme [SOK00] remains open.

Due to their lack of trapdoors, discrete logarithm groups are not an obvi-
ous choice to construct IBI schemes. Nevertheless, Beth [Bet88] did propose
such an IBI scheme, without providing any security proofs however. We sur-
faced the Beth t -SI scheme of which the IBI sibling coincides with the scheme
of Beth [Bet88], but we were only able to prove the special case of Beth1 -SI se-
cure under passive attack under an unusual assumption on ElGamal signatures.
From this, the passive security of Beth1 -IBI and the security of Beth1 -SS and
Beth1 -IBS under the same assumption follow.

Schemes needing direct proof. The only IBI scheme we found in the liter-
ature not originating from a cSI scheme is a scheme by Okamoto [Oka93] that
we call OkDL-IBI . While no security proof for it was known prior to our work,
we were able to prove it secure under the discrete logarithm assumption. We
obtained a corresponding IBS scheme through our extended efs-IBI-2-IBS trans-
form. Lastly, we presented a more natural variant called the XDL-IBI that we
also proved secure as an IBI scheme directly.

5.2 Transitive Signatures

In Chapter 4, we discussed transitive signature (TS) schemes as introduced by
Micali and Rivest [MR02b], allowing to sign edges in a graph such that from two
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signatures σ1 and σ2 on adjacent edges {i, j} and {j, k}, anyone can compute a
third signature σ3 on the direct edge {i, k}.
The schemes. Apart from introducing the concept, Micali and Rivest also
proposed the first non-trivial construction based on discrete logarithms, that we
refer to as the DL-TS scheme. Our starting point was the RSA-based RSA-TS
scheme that was briefly mentioned by Micali and Rivest to be secure against
non-adaptive adversaries. We revisited this scheme and provided a security proof
against adaptive adversaries, but under the one-more RSA assumption instead
of its mere one-wayness.

In quest of a TS scheme that is provably secure against adaptive adversaries
under the one-wayness of RSA, we presented the Fact -TS scheme and proved it
secure under the even weaker factoring assumption. The security proof involved
a delicate information-theoretic lemma showing that signatures do not leak any
relevant information about the secret choices of the signer. We also presented the
DL1m-TS scheme, a more natural and slightly more efficient variant of DL-TS
based on the one-more discrete logarithm problem, and the Gap-TS scheme
based on the one-more Gap Diffie-Hellman assumption.

Eliminating node certificates. All of the above schemes follow a common
paradigm that we called the node certification paradigm, in which a public la-
bel is assigned to each node by signing the node name together with its public
label using a standard signature scheme. We presented a hash-based technique
that eliminates the need for node certificates, and completely removes the stan-
dard signature scheme and its associated costs from the picture. The technique
was easily applied to the RSA-TS and Gap-TS schemes to yield the RSAH -TS
and GapH -TS schemes, and after minor modifications the Fact -TS scheme was
amenable to a hash-based variant FactH -TS as well. All hash-based schemes
were proven secure in the random oracle model.

Viewing the similarities between the different hash-based schemes, and con-
tinuing the line of generalized TS constructions of Hohenberger [Hoh03], we
distilled the concept of trapdoor samplable group homomorphisms – which is
remarkably close to the concept of trapdoor samplable relations on which we
based the definition of cSI schemes in Chapter 3. From this concept, we con-
structed one TS scheme NC -TS following the node-certification paradigm, and
a second hash-based TS scheme called H -TS . We then showed that if NC -TS
is transitively unforgeable under chosen-message attack, then so is H -TS in
the random oracle model. Through this general theorem, the security of the
RSAH -TS , FactH -TS and GapH -TS schemes is implied by the security of the
RSA-TS , Fact -TS and Gap-TS schemes, respectively.

Definitional contributions. We demonstrated a problem with the correct-
ness definition of TS schemes as put forward by Micali and Rivest by showing
that neither the DL-TS schemes nor any of our schemes meets it. We presented a
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new, more realistic correctness definition that is met by practical schemes, while
avoiding the entanglement of security and correctness as in the old definition.

5.3 Open Problems

We conclude this thesis with a number of suggestions for further research.

Filling the gaps in Table 3.2. In spite of the considerable effort spent
on investigating the security properties of schemes under different notions in
Section 3.5, a few entries in Table 3.2 remain unanswered. The first concerns
the security of the ItR -SI scheme under concurrent attack. One would have to
go through the details of the proof under active attack [Sch96] to verify whether
the same proof strategy extends to concurrent attacks. The security of ItR -IBI
would follow from that of ItR -SI by applying our framework.

A second series of open entries in the table is due to the Beth t family. We
proved the imp-pa security of the Beth1 -SI scheme under a weak assumption
on hashed-message ElGamal signatures. We were unable to extend the proof
technique of Theorem 3.21 to active and concurrent attacks, as it is unclear
how to simulate interactive prover sessions with the cheating verifier without
knowing the secret key. Also, it is still an open problem if the Beth1 -SI scheme
can be proven secure under a more natural assumption.

The situation for the Beth t family for t > 1 is even more peculiar, as we don’t
even know whether the Beth t -SI scheme is convertible. The sampling algorithm
for t = 1 exploits the existential forgeability of textbook-ElGamal signatures,
but this approach fails for higher key multiplicities because a single value for R
has to “fit” all t values of Xi. The same problem occurs when trying to simulate
conversations for the Beth t -SI scheme, leaving even security under passive attack
as an open problem.

Tighter reductions through direct proofs. The quadrangle of transfor-
mations in Figure 3.1 is a powerful tool that greatly simplifies the task of proving
the asymptotical security of IBI and IBS schemes, but its generality prevents
scheme-specific optimizations that would result in tighter security reductions.
The need for such optimizations becomes clear when filling in concrete values
in the reduction equations of the general transforms. For example, to make the
Sh-IBS scheme as secure as the Sh-SI scheme with a 1024-bit modulus against
an adversary who is allowed 260 queries to both of its random oracles and 230

signature queries, according to Equations (3.3) and (3.5) one would have to
instantiate it with a 6701-bit modulus. If we want to make it as secure as the
1024-bit RSA problem itself and we hence also have to take into account the
square root of Equation (3.7) due to the Reset Lemma, then the equivalent
modulus length even runs up to 19611 bits. However, this does not mean that
the scheme is insecure for smaller moduli: the theorems don’t imply an actual
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attack, and tighter proofs might exist.
In particular, for some IBI and IBS schemes it might be possible to eliminate

the factor QH

CV
induced by Equation (3.4) when proving security directly, instead

of through the transform. For example, when proving security of IBI schemes
under a one-more assumption (e.g. the GQ -IBI , Sh-IBI , Sh∗-IBI , SOK -IBI
and Hs-IBI schemes under active and concurrent attack), one could use the
challenge oracle instead of the Sample algorithm to generate answers to A’s
random oracle queries. This would allow to transform an attack on any identity
into a solution of the problem (instead of only the identity that was guessed in
advance), thereby eliminating the factor QH

CV
from the reduction equation.

Identity-based cryptography without random oracles. The fact that
both the cSI-2-IBI and the cSS-2-IBS transform have security proofs in the ran-
dom oracle model does not appear to be a coincidence. Trivial solutions like
the certificate-based IBI scheme of Section 3.3 left apart, all currently known
identity-based schemes need a random oracle to map the (non-random) identity
string to a random element of some set. While reasonably efficient schemes not
needing random oracles have been proposed for other primitives like standard
encryption [CS98] and signatures [CS00, GHR99], such schemes only exist un-
der the form of trivial solutions (e.g. IBI and IBS schemes), or remain elusive
altogether (e.g. identity-based encryption).

Viewing the objections against the random oracle model that we formulated
in Section 2.2, it would be interesting to investigate the existence of practical
and efficient identity-based cryptography in the standard model. Such solutions
might involve alternative assumptions on hash functions (such as the division
intractability [GHR99]) that go beyond mere collision-resistance, but that are
still more reasonable than the random oracle model.

Directed transitive signatures. All transitive signature schemes we sug-
gested in Chapter 4 are for undirected graphs only. If truly compelling applica-
tions of transitive signatures exist, however, they are more likely to be found
for directed graphs than for the undirected case. At this point, no constructions
for directed transitive signatures have been proposed, and Hohenberger [Hoh03]
even provided evidence that they might be very hard to construct.

The problem can already be seen from trying to convert currently known
schemes to the undirected setting: on the one hand, we still need an algebraic
operation, say multiplication, on node labels to provide composition of signa-
tures, but on the other hand it should be hard to invert node labels. Hohen-
berger takes this idea a couple of steps further and proves that the existence
of a directed transitive signature scheme would imply the existence of a special
algebraic structure, called an Abelian trapdoor group with infeasible inversion,
that is not known to exist.

Hohenberger’s result, however, applies only to schemes that follow the node
certification paradigm, as her model sees node certification as an intrinsic func-
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tionality of a transitive signature scheme. It is not unthinkable that directed
transitive signature schemes exist using a completely different approach, with-
out needing to imply the existence of an exotic algebraic structure.

Compressing certificate chains. One might try to apply transitive signa-
tures to shrink down so-called certificate chains to a single signature. Certificate
chains are used to trace back the authenticity of a user’s public key to a root
certificate that is typically embedded in the verifier’s software. They arise from
hierarchically structured PKIs in which each certification authority (CA) signs
the public key of the next. A certificate chain of length n tracing back a user’s
public key pkn to a root public key pk0 contains n signatures and n public keys,
as follows:

pkn ‖ Sign(skn−1, pkn) ‖ pkn−1 ‖ Sign(skn−2, pkn−1) ‖ . . . ‖ pk1 ‖ Sign(sk0, pk1).

In spite of the first-sight analogy between graphs and CA trees, transitive sig-
natures cannot help to compress this chain into a single signature, as the sig-
natures that need to be composed here are signed under different secret keys,
while transitive signatures are limited to a single signer.

So-called aggregate signatures [BGLS03, LMRS] are better suited for the job,
as they combine n signatures of n signers on n different messages into a single
signature of constant length. This indeed allows to compress the n signatures
above into a single signature, but unfortunately all public keys in the chain
are needed to verify the signature, resulting in a significantly reduced but still
linear-length certificate chain

pkn ‖ pkn−1 ‖ . . . ‖ pk1 ‖ σ .

Ultimately, we would like to reduce the chain even further to something of the
form

pkn ‖ σ,
where σ can be verified using pkn and pk0 only. We need a primitive with a
special kind of composition that allows to “squeeze a key pair from the middle”,
meaning that given a signature for message M under sk1 and a signature for
pk1 under sk2, it should be possible to compute a third signature for message
M under sk2 directly. No construction offering such functionality is currently
known.
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Bewijsbaar Veilige Identiteitsgebaseerde

Identificatieschema’s en

Transitieve Handtekeningen

Gregory NEVEN

Beknopte Samenvatting

Tot de jaren tachtig was cryptografisch ontwerp eerder een vaardigheid dan een
echte wetenschap: schema’s werden voorgesteld met hooguit een intüıtie voor
hun veiligheid, met als enig criterium de jarenlange weerstand tegen aanvallen
van experts. Een modernere aanpak is bewijsbare veiligheid. Volgens deze aan-
pak beschrijft de ontwerper van een schema eerst duidelijk wat verstaan wordt
onder de veiligheid van het schema. Vervolgens toont hij wiskundig aan dat
het schema enkel kan gebroken worden door een onveilig onderliggend crypto-
grafisch bouwblok te breken, of door een wiskundige doorbraak te realiseren.
Bewijsbare veiligheid is geëvolueerd van een speeltje voor theoretici tot een be-
langrijke schema-eigenschap waarmee rekening wordt gehouden bij de keuze van
industriestandaarden.

In deze thesis bestuderen we de bewijsbare veiligheid van enkele geselecteer-
de cryptografische primitieven. We stellen eerst bruikbare maar haalbare veilig-
heidsnoties op, en bewijzen vervolgens de veiligheid van bestaande en nieuwe
schema’s onder deze noties.

Het eerste deel behandelt identiteitsgebaseerde identificatie- en handteke-
ningsschema’s. Dit zijn cryptografische primitieven voor entiteits- en bood-
schapsauthenticatie, respectievelijk, waarbij de publieke sleutel van een gebrui-
ker eenvoudigweg zijn identiteit is (in plaats van een willekeurig getal dat op een
veilige manier aan de gebruiker moet worden toegekend). We stellen eerst een
raamwerk van veiligheidsbewarende transformaties voor. Vervolgens gebruiken
we dit raamwerk om de veiligheid te bewijzen (en in een enkel geval, te breken)
van schema’s van 13 verschillende “families” die in de loop van de afgelopen
twee decennia voorgesteld werden, maar waarvoor nog geen bewijs gekend was.

In het tweede deel bespreken we transitieve handtekeningsschema’s. Dit zijn
handtekeningsschema’s die toelaten verbindingen in een grafe te ondertekenen
zodat elke gebruiker (en dus niet enkel de ondertekenaar) vanuit twee handte-
keningen voor aanliggende verbindingen {i, j} en {j, k} een derde handtekening
kan berekenen voor de rechtstreekse verbinding {i, k}. We beantwoorden een
open vraag betreffende de veiligheid van een bestaand schema, en stellen nieu-
we, bewijsbaar veilige schema’s voor die efficiëntievoordelen bieden ten opzichte
van bestaande schema’s.
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1 Inleiding

Cryptografie is een oude vaardigheid, maar is relatief jong als een echte we-
tenschap. Vierduizend jaar geleden al weken de oude Egyptenaren regelmatig
af van de gangbare hiëroglyfische notatie om de inhoud belangrijker te doen
lijken. De Spartanen schreven geheime boodschappen langs de as van een stok
waarrond een strook perkament gewikkeld was; het perkament werd afgerold
getransporteerd, en de ontvanger reconstrueerde de boodschap door het weer
op te rollen rond een stok van dezelfde diameter. Julius Caesar gebruikte een
naar hem genoemde cijfer die elke letter vervangt door de letter drie plaatsen
verder in het alfabet.

Dergelijke technieken boden misschien een redelijke bescherming in een maat-
schappij met een grotendeels ongeletterde bevolking, maar schieten duidelijk
tekort voor de huidige communicatienoden. Met het Internet als globale in-
formatie-infrastructuur zijn gegevens die vroeger slechts mits een aanzienlij-
ke inspanning konden verkregen worden, tegenwoordig via enkele muisklikken
beschikbaar. De keerzijde van de medaille is een verhoogde blootstelling aan
kwaadaardige gebruikers, die bovendien aangetrokken worden door een hoge-
re verwachte buit. Met een wettelijke bescherming die te traag en ingewikkeld
blijkt om als afdoend afschrikkingsmiddel dienst te doen, is het voorkomen van
aanvallen door technische middelen belangrijker dan ooit.

Niet toevallig nam de publieke aandacht voor cryptografie een hoge vlucht
rond dezelfde tijd dat digitale informatie haar plaats begon op te eisen in de
maatschappij. Tijdens de jaren zeventig werd de blokcijfer DES (Data Encryp-
tion Standard [Nat77]) ontwikkeld, maar de echte doorbraak kwam met de con-
ceptuele uitvinding van publieke-sleutel cryptografie door Diffie en Hellman in
1976 [DH76]. In de plaats van Alice en Bob op voorhand een geheime sleutel
te laten afspreken om later hun gesprekken mee te beveiligen, stelden Diffie en
Hellman voor sleutels in paren te laten voorkomen, bestaande uit een publie-
ke en een private sleutel. Alice publiceert haar publieke sleutel, maar houdt
haar private sleutel strikt geheim. Als Bob een boodschap naar Alice wil sturen,
encrypteert hij die met Alice’s publieke sleutel; de resulterende cijfertekst kan
enkel met Alice’s private sleutel terug gedecrypteerd worden. Natuurlijk moet
er een wiskundig verband bestaan tussen de publieke en de private sleutel, maar
het schema wordt zodanig ontworpen dat het onmogelijk is binnen een “redelijke
tijd” de private sleutel te berekenen horende bij een bepaalde publieke sleutel.
Twee jaar later publiceerden Rivest, Shamir en Adleman [RSA78] het eerste
concrete publieke-sleutel encryptieschema, het RSA algoritme, een bijdrage die
in 2002 met de ACM Turing Award bekroond werd.

Bewijsbare veiligheid. Alhoewel de uitvinding van publieke-sleutel crypto-
grafie meteen de aandacht trok van talrijke goede wetenschappers, bleef het
ontwerp van cryptografische protocols en primitieven gedurende minstens een



Inleiding 153

decennium eerder een vaardigheid dan een echte wetenschap. Schema’s werden
voorgesteld met hooguit een intüıtie waarom ze moeilijk te breken zouden zijn,
met als enige maatstaf voor veiligheid de jarenlange weerstand van het schema
tegen aanvallen van experts in het onderzoeksdomein.

In het begin van de jaren 1980 introduceerden Goldwasser en Micali [GM84]
een nieuwe aanpak: bewijsbare veiligheid, soms toepasselijker reductionistische
veiligheid genoemd. Het idee van bewijsbare veiligheid is wiskundig aan te tonen
dat elke succesvolle aanval op een schema kan omgevormd worden in een aanval
op een onderliggend primitief, of in de oplossing van een wiskundig probleem
waarvan algemeen wordt aangenomen dat het niet “efficiënt” (d.w.z. in poly-
nomiale tijd) kan opgelost worden. Dit verbindt de veiligheid van een schema
rechtstreeks aan de veiligheid van de onderliggende bouwblokken, en reduceert
de opties van een aanvaller tot het breken van een onveilige subcomponent of
tot het realiseren van een wiskundige doorbraak.

Sindsdien is bewijsbare veiligheid uitgegroeid van een speeltje voor theoretici
tot een belangrijke eigenschap van een schema, die ook in rekening gebracht
wordt bij het vastleggen van industriestandaarden.

Het willekeurig-orakelmodel. Aangemoedigd door het gebrek aan effi-
ciënte bewijsbaar veilige cryptografische constructies om de heuristische sche-
ma’s te vervangen die in het midden van de jaren negentig in gebruik waren,
stelden Bellare en Rogaway [BR93a, Bel98] het willekeurig-orakelmodel voor als
compromis tussen theorie en praktijk. Het idee is de veiligheid te bewijzen in
een “denkbeeldige wereld” waarin alle deelnemers, zowel goede als slechte, toe-
gang hebben tot een orakel H(·) dat een willekeurige functie implementeert.
In de praktijk wordt dit willekeurig orakel vervangen door een cryptografische
hash-functie als SHA-1 [Nat95] of RIPEMD-160 [DBP96], in de hoop dat deze
het onvoorspelbaar gedrag van het willekeurige orakel voldoende imiteert om de
veiligheid te blijven waarborgen in de “echte wereld”.

Strikt gezien is een bewijs in het willekeurig-orakelmodel niet langer een be-
wijs, maar hoogstens nog een goede heuristiek, want (berekenbare) hash-functies
kunnen vanzelfsprekend nooit onvoorspelbaar zijn. Er bestaat dan ook heel wat
controverse rond het willekeurig-orakelmodel in de cryptografische onderzoeks-
gemeenschap [CGH98, Nie02, GK03], en inderdaad, bewijzen in het willekeurig-
orakelmodel moeten met enige voorzichtigheid benaderd worden. Anderzijds is
het een zeer waardevol hulpmiddel gebleken voor het bestuderen van de veilig-
heid van efficiënte schema’s die jarenlang zowel aanval als bewijs weerstonden.
Bovendien heeft een schema met een bewijs in het willekeurig-orakelmodel nog
steeds een sterke voorkeur boven volledig ad-hoc protocolontwerp. Het is met
deze waarschuwing in het achterhoofd dat ook dit werk gebruik maakt van wil-
lekeurige orakels.

Onderwerp van deze thesis. Dit werk past de aanpak van bewijsbare veilig-
heid toe op een aantal geselecteerde cryptografische primitieven door eerst een
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nuttige en haalbare veiligheidsnotie te definiëren, en vervolgens veiligheid onder
die notie aan te tonen, zowel voor bestaande maar onbewezen schema’s als voor
volledig nieuwe schema’s.

Deze thesis bestaat uit twee delen. In het eerste deel behandelen we bewijs-
baar veilige identiteitsgebaseerde identificatie- en handtekeningsschema’s. Iden-
tificatieschema’s zijn cryptografische primitieven om entiteitsauthenticatie te
verzorgen, d.w.z. ze bieden een garantie dat entiteiten (gebruikers, computers,
. . . ) zijn wie ze beweren te zijn. Handtekeningsschema’s zijn primitieven voor
boodschapsauthenticatie, en garanderen dat boodschappen afkomstig zijn van de
zender van wie ze lijken afkomstig te zijn. Identiteitsgebaseerde [Sha84] primi-
tieven laten toe de identiteit of het email-adres van een gebruiker als publieke
sleutel te gebruiken, hetgeen efficiëntievoordelen biedt in vergelijking met de
klassieke techniek van certificaten om publieke sleutels aan gebruikers te ver-
binden. In dit werk stellen we een veiligheidsbewarende transformatie voor die
we vervolgens toepassen om de veiligheid te bewijzen van een dozijn identi-
teitsgebaseerde identificatie- en handtekeningsschema’s die in de voorbije twee
decennia voorgesteld werden.

Het tweede deel van deze thesis handelt over transitieve handtekeningen
[MR02b]. Dit zijn digitale handtekeningen die toelaten verbindingen in een grafe
te ondertekenen zodat eender wie vanuit twee handtekeningen voor aanliggen-
de verbindingen {i, j} en {j, k} een geldig derde handtekening kan berekenen
voor de rechtstreekse verbinding {i, k}. We beantwoorden een open vraag ge-
steld door [MR02b], en presenteren een aantal nieuwe schema’s die aanzienlijke
efficiëntievoordelen bieden ten opzichte van de bestaande schema’s.

Overzicht. In Sectie 2 introduceren we de notatie die doorheen de tekst zal ge-
hanteerd worden, gaan we iets dieper in op bewijsbare veiligheid, en beschrijven
we kort de wiskundige problemen waarop de schema’s in deze tekst gebaseerd
zijn. Sectie 3 vat onze resultaten samen voor identiteitsgebaseerde identificatie-
en handtekeningsschema’s, en Sectie 4 doet hetzelfde voor transitieve handte-
keningen. We besluiten de thesis in Sectie 5 met enkele suggesties voor verder
onderzoek.

2 Voorkennis

Notatie. Definieer {0, 1} als de verzameling van individuele bits, en {0, 1}∗ als
de verzameling van alle bitstrings. Laat N = {0, 1, 2, . . .} de verzameling van na-
tuurlijke getallen voorstellen. Als k ∈ N, dan is 1k de string van k één-symbolen
en is {0, 1}k de verzameling van bitstrings van lengte k. De lege bitstring wordt
voorgesteld door ε. Als x, y strings zijn, dan is |x| de lengte van x en is x‖y de
concatenatie van x en y. Als S een verzameling is, dan is |S| de cardinaliteit van

S. Met de notatie x
R← S bedoelen we dat een element x geselecteerd wordt uit
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S volgens een uniforme verdeling. Een functie f : N→ [0, 1] is verwaarloosbaar
als hij sneller naar nul gaat dan de inverse van eender welke veelterm, oftewel
voor elke exponent c ∈ N bestaat er een kc ∈ N zodat f(k) ≤ k−c voor alle
k > kc.

Als A een (mogelijk probabilistisch) algoritme is met toegang tot orakels

Or1, . . . ,Orm, dan betekent y
R← A(x1, . . . , xn : Or1, . . . ,Orm) dat het re-

sultaat van een uitvoering van A op invoer x1, . . . , xn wordt toegekend aan de
variabele y. Een interactief algoritme is een toestandshebbend algoritme dat
op invoer een inkomend bericht Min en een toestand St , een uitgaand bericht
Mout en een vernieuwde toestand St ′ als uitvoer teruggeeft; dit noteren we als

(Mout,St ′)
R← A(Min,St : Or1, . . . ,Orm). Een algoritme is polynomiale-tijd als

de uitvoeringstijd ervan begrensd is door een veelterm in de lengte van de invoer.

Bewijsbare veiligheid. Vooraleer zinvolle uitspraken te kunnen doen over
de veiligheid van een cryptografisch schema, moet het eerst perfect duidelijk
zijn wat er onder “veiligheid” verstaan wordt. Dit wordt vastgelegd door de
veiligheidsnotie geassocieerd aan het primitief. Dit is een spel of experiment
waarin een tegenstander, gemodelleerd als een algoritme, uitgedaagd wordt om
met behulp van bepaalde inputs en orakels een aanval te plegen op het schema.

Het veilgheidsexperiment is geparametriseerd met een veiligheidsparameter
k, typisch de lengte van een sleutel gebruikt in het experiment. We modelleren de
tegenstander als een algoritme A, en definiëren het voordeel Advsec

S ,A(k) van een
tegenstander A in het aanvallen van schema S onder veiligheidsnotie sec als de
kans dat A het spel wint. We zeggen dat het schema veilig is onder notie sec als
er geen polynomiale-tijd tegenstander A bestaat met een niet-verwaarloosbaar
voordeel in het breken van S . Het veiligheidsbewijs toont aan dat een dergelijke
tegenstander inderdaad niet kan bestaan, meestal door een bewijs uit het onge-
rijmde: veronderstel dat deze tegenstander wel bestaat, dan bestaat er tevens
een algoritme dat hetzij een aanval pleegt op een onderliggend primitief, het-
zij een wiskundig probleem oplost waarvan algemeen wordt aangenomen dat er
geen efficiënte oplossingen voor bestaan.

Moeilijke wiskundige problemen. De meeste schema’s behandeld in deze
tekst zijn bewijsbaar veilig onder de veronderstelling dat een bepaald wiskundig
probleem niet efficiënt oplosbaar is. We bespreken hier kort enkele voorbeelden
van zulke problemen.

Veruit het meest gekende (en meest bestudeerde) probleem is dat van het
factoriseren van grote getallen. Ondanks aanzienlijke inspanningen van wiskun-
digen over de hele wereld, bestaat er geen polynomiale-tijd algoritme dat, gege-
ven een getal N = pq waarbij p en q twee grote priemgetallen zijn, de factoren
p en q berekent.

Het RSA-probleem [RSA78] is nauw verwant aan het factorisatieprobleem:
gegeven een modulus N zoals hierboven, een exponent e zodat gcd(e, ϕ(N)) = 1
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en een willekeurig element y ∈ Z
∗
N , bereken x ∈ Z

∗
N zodat xe ≡ y mod N . Hierbij

is Z
∗
N de multiplicatieve groep modulo N , en is ϕ(N) = (p− 1)(q − 1) de orde

ervan. Het RSA-probleem is gemakkelijk op te lossen als N kan gefactoriseerd
worden, maar het is onbekend of het omgekeerde ook waar is.

Een recente variant op het RSA-probleem is het één-meer RSA-probleem
[BNPS03], waarbij de tegenstander een modulus N en exponent e als invoer
krijgt, en toegang heeft tot twee orakels. Het eerste is een uitdagingsorakel dat op
elke invocatie een nieuwe uitdaging yi genereert, willekeurig gekozen uit Z

∗
N . Het

tweede is een inversie-orakel, dat op invoer y ∈ Z
∗
N antwoordt met x ∈ Z

∗
N zodat

xe ≡ y mod N . De taak van de tegenstander bestaat erin alle uitdagingen van
het uitdagingsorakel te inverteren met behulp van een aantal bevragingen van
het inversie-orakel dat strikt kleiner is dan het aantal gëınverteerde uitdagingen.
Het is duidelijk dat dit probleem gemakkelijk oplosbaar is als het RSA-probleem
dat ook is; de veronderstelling dat het één-meer RSA-probleem moeilijk op te
lossen is, is dus zwaarder dan de gewone RSA-veronderstelling.

Een andere klasse van getaltheoretische problemen die gebruikt worden in de
cryptografie zijn gebaseerd op discrete logaritmen. In een multiplicatieve groep
G van orde q met generator g is het discrete logaritme van y ∈ G ten opzichte
van g gedefinieerd als het unieke getal x ∈ Zq zodat gx ≡ y. Voorbeelden van
groepen waarin het berekenen van discrete logaritmen moeilijk verondersteld
wordt zijn primale-orde subgroepen van Z

∗
p, met p een priemgetal, en ellipti-

sche curven. Net als bij het RSA-probleem kunnen we het één-meer discrete-
logaritmeprobleem [BNPS03] definiëren waarbij de tegenstander toegang krijgt
tot een uitdagingsorakel en een discrete-logaritme-orakel, en hij het discrete lo-
garitme van alle uitdagingen moet berekenen met strikt minder bevragingen van
het discrete-logaritme-orakel.

Twee problemen gerelateerd aan discete logaritmen zijn het computatione-
le Diffie-Hellman (CDH) [DH76] en het beslissing Diffie-Hellman (DDH) pro-
bleem. Het CDH-probleem is, gegeven u ≡ ga en v ≡ gb, het element w te bere-
kenen zodat w ≡ gab; het DDH-probleem bestaat erin voor een gegeven u ≡ ga,
v ≡ gb en w te beslissen of w ≡ gab of niet. Beide problemen zijn gemakkelijk
als het berekenen van discrete logaritmen gemakkelijk is, en het DDH-probleem
is gemakkelijk als het CDH-probleem gemakkelijk is. Implicaties in de omge-
keerde richting zijn opnieuw onbekend, maar recentelijk werden de zogenaamde
paring-groepen ontdekt (op basis van de Weil en Tate paringsfuncties over su-
persinguliere elliptische curven; zie [JN03, BF01] voor meer details) waarin het
DDH-probleem gemakkelijk is, maar waarin het CDH-probleem nog steeds ver-
ondersteld wordt moeilijk oplosbaar te zijn. Groepen met deze eigenschap wor-
den ook wel algemener kloof-Diffie-Hellmangroepen (GDH-groepen) genoemd,
maar voorlopig zijn de paring-groepen het enige bekende voorbeeld ervan. Ook
van het CDH-probleem bestaat een één-meer variant, het zogenaamde één-meer
CDH-probleem [Bol03a].
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3 Identiteitsgebaseerde Identificatieschema’s

3.1 Achtergrond

Tijdens het einde van de jaren tachtig en het begin van de jaren negentig wer-
den talrijke identiteitsgebaseerde identificatieschema’s (IBI-schema’s) en iden-
titeitsgebaseerde handtekeningsschema’s (IBS-schema’s) voorgesteld, zoals on-
der meer de Fiat-Shamir IBI- en IBS-schema’s [FS86], het IBS-schema in de
paper van Shamir [Sha84] waarmee hij het concept van identiteitsgebaseerde
cryptografie introduceerde, en andere schema’s [Oka93, Gir90, Bet88]. Meer
recentelijk werden ook een aantal paring-gebaseerde IBS-schema’s voorgesteld
[SOK00, Hes03, Pat02, CC03, Yi03].

Alhoewel er heel wat literatuur bestaat over de bewijsbare veiligheid van
identificatieschema’s, beperkt dit werk zich tot standaard identificatieschema’s
(SI schema’s), en houdt het geen rekening met de bijkomende risico’s gëıntrodu-
ceerd door het identiteitsgebaseerde aspect. Zo bestaan er bijvoorbeeld vei-
ligheidsbewijzen voor SI-schema’s die nauw verwant zijn met de IBI-schema’s
van Fiat-Shamir en Guillou-Quisquater [FS86, GQ89], maar niet voor de IBI-
schema’s zelf. Sterker nog, een bewijsbaar veilige aanpak voor IBI-schema’s ont-
breekt volkomen: er zijn geen geschikte veiligheidsnoties, en bijgevolg werd ook
geen van de voorgestelde IBI-schema’s veilig bewezen.

De situatie voor IBS-schema’s is iets beter. Cha en Cheon geven een de-
gelijke veiligheidsdefinitie voor IBS-schema’s en bewijzen de veiligheid van hun
paring-gebaseerd schema [CC03]. Dodis, Katz, Xu en Yung [DKXY03] definiëren
een klasse van standaard handtekeningsschema’s (SH-schema’s) die ze valdeur
SH-schema’s noemen, en presenteren een algemene transformatie die elk vei-
lig valdeur SH-schema omzet in een veilig IBS-schema. De bewijsbare veilig-
heid van verscheidene bestaande IBS-schema’s volgt uit het toepassen van deze
transformatie op SH-schema’s waarvan de veiligheid eerder al bewezen werd.
Desalniettemin blijft de veiligheid van verscheidene IBS-schema’s onbewezen,
hetzij omdat ze niet het resultaat zijn van de transformatie toegepast op een
valdeur SH-schema, hetzij omdat de veiligheid van het onderliggend SH-schema
nooit geanalyseerd werd.

Dit werk vult de bovenstaande leemtes betreffende IBI- en IBS-schema’s
op. De eerste stap is het opstellen van geschikte veiligheidsdefinitie voor IBI-
schema’s. Vervolgens presenteren we een raamwerk van nieuwe en bestaande
veiligheidsbewarende transformaties zoals afgebeeld in Figuur 5.1. Dit raam-
werk reduceert het veilig bewijzen van IBI- en IBS-schema’s tot het aantonen
van de veiligheid van een onderliggend SI-schema, hetgeen een aanzienlijk een-
voudigere taak is. Met dit raamwerk als gereedschap in de hand analyseren we
de veiligheid van twee decennia aan voorgestelde IBI- en IBS-schema’s onder de
vorm van 13 families van schema’s, en behalen nieuwe resultaten hetzij door toe-
passing van onze transformaties op bewijsbaar veilige schema’s, hetzij door het
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bewijzen van voorheen niet-geanalyseerde onderliggende schema’s, hetzij door
het voorgestelde schema te breken. Tenslotte bespreken we twee uitzonderlij-
ke IBI-schema’s (waarvan één gekend en één nieuw) die, alhoewel ze niet het
resultaat zijn van het toepassen van onze transformaties, wel rechtstreeks als
IBI-schema’s veilig kunnen bewezen worden. Voor zover we weten zijn dit de
enige IBI en IBS-schema’s bekend in de literatuur die niet omvat worden door
ons raamwerk. Figuur 5.2 vat onze resultaten voor specifieke schema’s samen.

3.2 Definities en Veiligheidsnoties

Standaard identificatieschema’s. Een standaard identificatieschema (SI-
schema) is een tupel SI = (Kg,P,V) van 3 algoritmes, waar Kg een gerandomi-
seerd polynomiale-tijd sleutelgeneratie-algoritme is, en waar P en V polynomiale-
tijd interactieve algoritmes zijn genaamd de bewijzer en de verifieerder. Initieel
voert de bewijzer Kg(1k) uit, waar k ∈ N de veiligheidsparameter is, om een
sleutelpaar (pk , sk) te verkrijgen. Hij publiceert de publieke sleutel pk , maar
houdt de private sleutel sk geheim. Tijdens het interactieve identificatieproto-
col voert de bewijzer P uit met sk als initiële toestand, en voert de verifieerder
V uit met pk als initiële toestand. Het protocol eindigt wanneer V in de acc of
rej toestand terechtkomt, waarmee hij te kennen geeft dat hij de conversatie
accepteert, respectievelijk verwerpt.

De veiligheidsnotie die we beogen is die van impersonificatie onder passieve,
actieve en concurrente aanval. Een SI-tegenstander A wordt voorgesteld door een
koppel algoritmes (CV,CP), waarbij CV de valse verifieerder wordt genoemd en
CP de valse bewijzer. De aanval verloopt in twee fasen. De eerste is een leerfase,
waarin de valse verifieerder een verse publieke sleutel als invoer krijgt, en waar-
in hij bovendien toegang heeft tot een orakel dat ofwel afschriften genereert
van geslaagde conversaties tussen een echte bewijzer en verifieerder (passieve
aanval [FFS88]), ofwel de valse verifieerder toelaat te interageren met echte be-
wijzers gëınitialiseerd met de overeenkomstige private sleutel (actieve [FFS88]
en concurrente [BP02] aanval). Bij een actieve aanval moet de valse verifieerder
de sessies met verschillende bewijzers sequentieel afwerken, bij een concurrente
aanval mogen de verschillende sessies op een willekeurige manier met mekaar
verweven worden. De eerste fase eindigt als CV zijn uitvoer beëindigt en toe-
standsinformatie St als uitvoer teruggeeft. Deze toestandsinformatie wordt in
de tweede fase als invoer aan de valse bewijzer CP gegeven. De tweede fase
is de zogenaamde impersonatiefase, waarin CP wordt geconfronteerd met een
echte verifieerder V gëınitialiseerd met pk en moet trachten op basis van de toe-
standsinformatie St de verifieerder te doen accepteren, zonder enige hulp van
bijkomende orakels. Het voordeel van tegenstander A om het SI-schema SI te
breken onder passieve (pa), actieve (aa) en concurrente (ca) aanval wordt geno-

teerd als Advimp-atk
SI ,A (k), atk ∈ {pa, aa, ca}, en is gedefinieerd als de kans van van
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A om het bovenstaande spel te winnen. We zeggen dat het SI imp-atk veilig is
als Advimp-atk

SI ,A (k) een verwaarloosbare functie is in k voor alle polynomiale-tijd
tegenstanders A.

Identiteitsgebaseerde identificatieschema’s. We definiëren een identi-
teitsgebaseerd identificatieschema (IBI-schema) als een tupel IBI = (MKg,UKg,
P,V) van vier polynomiale-tijd algoritmes. Een vertrouwde autoriteit voert het
hoofdsleutelgeneratie-algoritme MKg uit op invoer 1k om een hoofdsleutelpaar
(mpk ,msk) te verkrijgen. De sleutelautoriteit publiceert de publieke hoofdsleu-
tel mpk als een systeem-wijde parameter, en houdt de private hoofdsleutel msk
geheim. Op aanvraag van een gebruiker met identiteit I ∈ {0, 1}∗ voert hij het
gebruikerssleutelgeneratie-algoritme uit met als invoer msk en I om de geheime
gebruikerssleutel usk voor identiteit I te berekenen. (We veronderstellen dat
de sleutelautoriteit de identiteit van de gebruiker controleert en hem de sleu-
tel usk op een veilige manier bezorgt.) In het interactieve identificatieprotocol
voert de bewijzer met identiteit I het algoritme P uit met begintoestand usk ,
en de verifieerder voert het V algoritme uit gëınitialiseerd met mpk , I, totdat de
verifieerder in de acc of rej toestand terechtkomt.

Net als bij SI-schema’s is een IBI-tegenstander A een koppel algoritmes
(CV,CP) en verloopt het veiligheidsexperiment in twee fasen waarbij we een
onderscheid maken tussen passieve, actieve en concurrente aanvallen. Om de
bijkomende risico’s te modelleren die gëıntroduceerd worden door het identi-
teitsgebaseerde aspect, zoals bijvoorbeeld aanvallen vanwege interne en mogelijk
zelfs samenzwerende gebruikers van het systeem, krijgt de aanvaller toegang tot
twee bijkomende orakels: een initialisatie-orakel, waaraan CV middels een be-
vraging I te kennen geeft een gebruiker met identiteit I te willen initialiseren,
en een corruptie-orakel, waarmee CV de geheime gebruikerssleutel horende bij
een gëınitialiseerde identiteit I kan opvragen. De taak van de aanvaller bestaat
erin zich ten opzichte van de echte verifieerder succesvol voor te doen als een
identiteit J naar die de aanvaller zelf mag bepalen, zolang J voorheen niet
gecorrumpeerd werd. Het voordeel van A is zijn kans om bovenstaand expe-
riment te winnen en wordt genoteerd als Advimp-atk

IBI ,A
(k). Het IBI-schema IBI

is imp-atk veilig als dit voordeel verwaarloosbaar is voor alle polynomiale-tijd
tegenstanders A.

Standaard handtekeningsschema’s. Een standaard handtekeningsschema
(SS-schema) SS is een tupel van drie algoritmes (Kg,Sign,Vf), waarbij het sleu-
telgeneratie-algoritme Kg op invoer 1k een sleutelpaar (pk , sk) genereert. Het
handtekeningsalgoritme Sign berekent op invoer de private sleutel sk en bood-
schap M ∈ {0, 1}∗ een handtekening σ voor M . Op basis van de publieke sleutel
pk , een boodschap M en een handtekening σ beslist het verificatie-algoritme Vf
of het handtekening geldig is of niet.

De meest aanvaarde veiligheidsnotie voor SS-schema’s is die van existentiële
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onvervalsbaarheid onder gekozen-boodschap aanval (uf-cma), waarbij een tegen-
stander F de publieke sleutel als invoer krijgt, en toegang heeft tot een hand-
tekeningsorakel waaraan hij handtekeningen kan opvragen voor boodschappen
die hij kiest. De tegenstander wint het spel als hij erin slaagt een boodschap M
en een handtekening σ uit te voeren zodat Vf(pk ,M, σ) = 1 en zodat M niet
voorheen getekend werd door het orakel.

Identiteitsgebaseerde handtekeningsschema’s. Een identiteitsgebaseerd
handtekeningsschema (IBS-schema) IBS is een tupel van vier algoritmes (MKg,
UKg,Sign,Vf). Het hoofdsleutelgeneratie-algoritme MKg en het gebruikerssleu-
telgeneratie-algoritme UKg zijn gedefinieerd zoals voor IBI-schema’s, het hand-
tekeningsalgoritme Sign genereert op invoer usk ,M een handtekening σ, en het
verificatie-algoritme Vf beslist op basis van de publieke hoofdsleutel mpk , een
identiteit I, een boodschap M en een handtekening σ of het handtekening geldig
is of niet.

Veiligheid van IBS-schema’s [CC03] is gedefinieerd op een gelijkaardige ma-
nier als SS-schema’s, maar met bijkomende initialisatie- en corruptie-orakels net
als in het experiment voor IBI-schema’s. De IBS-tegenstander F kan handteke-
ningen opvragen voor boodschappen en identiteiten naar keuze, en moet om het
spel te winnen I,M, σ teruggeven zodat Vf(mpk , I,M, σ) = 1 en zodat M nog
niet getekend was onder identiteit I door het orakel. Het voordeel Advuf-cma

IBI ,F
(k)

is opnieuw de kans dat F dit spel wint, en het schema is uf-cma veilig als het
voordeel een verwaarloosbare functie is in k voor alle polynomiale-tijd tegen-
standers F.

3.3 Transformaties

Als eerste stap presenteren we het raamwerk van transformaties afgebeeld in
Figuur 5.1, dat (in de meeste gevallen) het bewijzen van IBI- of IBS-schema’s
herleidt tot het bewijzen van een onderliggend SI-schema. Sommige van deze
SI-schema’s waren al geanalyseerd in de literatuur, voor veel andere schema’s
was dit nog niet het geval. De tweede stap is veiligheidsbewijzen te voorzien voor
de SI-schema’s die nog niet veilig bewezen waren, en rechtstreekse veiligheids-
bewijzen als IBI- of IBS-schema’s te voorzien voor de zeldzame uitzonderingen
die niet omvat worden door ons raamwerk.

Wij zijn van mening dat de waarde van dit raamwerk verder gaat dan het
herleiden van het veilig bewijzen van IBI- en IBS-schema’s tot het bewijzen
van SI-schema’s. Het helpt een inzicht te verwerven in het ontwerp van IBI-
en IBS-schema’s, en brengt tijdens dit proces de hierboven vermelde impliciete
schema’s aan de oppervlakte. Globaal gezien draagt het raamwerk bij tot het
vereenvoudigen en verenigen van het onderzoeksdomein.

We introduceren een klasse van SI-schema’s die we converteerbaar noemen.
Het idee is dat het sleutelgeneratie-algoritme gebaseerd is op wat we een val-
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Naam-SI

Naam-SS

Naam-IBI

Naam-IBS

-
cSI-2-IBI

-
cSS-2-IBS?

fs-I-2-S

?

fs-I-2-S

Figuur 5.1: Familie van schema’s geassocieerd met een cSI-schema Naam-SI . Als
Naam-SI imp-atk veilig is voor atk ∈ {pa, aa, ca}, dan is Naam-IBI ook imp-atk veilig.
Als Naam-SI imp-pa veilig is, dan is Naam-IBS uf-cma veilig. De structuur van het dia-
gramma impliceert dat fs-I-2-S(cSI-2-IBI(Naam-SI )) = cSS-2-IBS(fs-I-2-S(Naam-SI )).

deur bemonsterbare relatie noemen. We stellen dan een transformatie cSI-2-IBI
voor die een converteerbaar SI-schema (cSI-schema) omzet in een IBI-schema,
en we bewijzen dat de transformatie veiligheidsbewarend is: als het oorspron-
kelijke cSI-schema veilig is tegen impersonatie onder passieve, actieve of con-
currente aanval, dan is het resulterende IBI-schema dat ook in het willekeurig-
orakelmodel.

Analoog daaraan definiëren we converteerbare SS-schema’s (cSS-schema’s)
en een transformatie cSS-2-IBS die uf-cma veilige cSS-schema’s omvormt tot
uf-cma veilige IBS-schema’s. Deze transformatie is een veralgemening van de
transformatie van Dodis et al. [DKXY03] in de zin dat elk valdeur SS-schema
tevens een cSS-schema is, en onze cSS-2-IBS transformatie identiek is aan de
transformatie van Dodis et al. [DKXY03] als het oorspronkelijk schema een
valdeur SS-schema is. Onze klasse van cSS-schema’s is echter strikt groter dan
de klasse valdeur SS-schema’s.

De gekende Fiat-Shamir transformatie [FS86] zet SI-schema’s om tot SS
schema’s, en het is geweten dat als het eerste veilig is onder passieve aanval
(imp-pa), het laatste onvervalsbaar is onder gekozen-boodschap aanval (uf-cma)
in het willekeurig-orakelmodel [AABN02]. Wij verwijzen naar deze transformatie
als de fs-I-2-S transformatie. Toepassing van deze transformatie vereist dat het
SI-schema aan bepaalde technische voorwaarden voldoet, maar deze zullen altijd
voldaan zijn voor de concrete schema’s die wij behandelen.

Door samenstelling van de bovenstaande transformaties kunnen we inzien
dat voor elk imp-pa veilig cSI-schema SI , het IBS-schema IBS = cSS-2-IBS(
fs-I-2-S(SI )) uf-cma veilig is in het willekeurig-orakelmodel. We merken op dat
fs-I-2-S tevens een IBI-schema omzet tot een IBS-schema, en dat het diagramma
in Figuur 5.1 “commuteert”, waarmee we bedoelen dat cSS-2-IBS(fs-I-2-S(SI )) =
fs-I-2-S(cSI-2-IBI(SI )) voor elk cSI-schema SI .

Terloops merken we op dat het analoog resultaat van Abdalla et al. [AABN02]
in het algemeen niet opgaat voor fs-I-2-S als een transformatie van IBI-schema’s
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naar IBS-schema’s: we tonen aan dat er imp-pa veilige IBI-schema’s bestaan die
na transformatie door fs-I-2-S onveilige IBS-schema’s opleveren. Dit is niet in
tegenspraak met het voorgaande, gezien het IBI-schema in kwestie niet het re-
sultaat is van het toepassen van de cSI-2-IBI transformatie op een cSI-schema,
maar compliceert de situatie lichtjes in enkele uitzonderlijke gevallen waar we
een IBS-schema veilig willen afleiden van een IBI-schema dat niet de cSI-2-IBI
transformatie van een cSI-schema is. Hiertoe breiden we de fs-I-2-S transforma-
tie uit tot de efs-IBI-2-IBS transformatie die wel elk imp-pa veilig IBI-schema
omzet in een uf-cma veilig IBS-schema.

3.4 Veiligheid van Specifieke Schema’s

Families van schema’s. We trachten alle IBI-schema’s IBI in de literatuur
te analyseren door een cSI-schema SI aan de oppervlakte te brengen zodat
cSI-2-IBI(SI ) = IBI , en op een gelijkaardige manier trachten we voor alle IBS-
schema’s IBS in de literatuur een cSI-schema SI aan de oppervlakte te brengen
zodat cSS-2-IBS(fs-I-2-S(SI )) = IBS . We slagen hierin voor de meeste sche-
ma’s die we vonden in de literatuur [FS86, GQ89, Sha84, Gir90, Hes03, CC03,
Yi03, Bet88] en het RSA-gebaseerd IBI-schema van Okamoto [Oka93]. Voor de-
ze schema’s herleiden we dus de taak IBI en IBS veilig te bewijzen tot het veilig
bewijzen van het SI schema.

We merken op dat deze manier van werken verscheidene schema’s aan de
oppervlakte brengt die “nieuw” zijn in de betekenis dat ze nooit expliciet in de
literatuur voorgesteld zijn. Zo presenteerde Shamir [Sha84] bijvoorbeeld het IBS-
schema Sh-IBS , maar geen IBI-schema. (Hij vermeldt zelfs het ontwerp van een
IBI-schema als open probleem.) Uit zijn IBS-schema brengen wij een cSI-schema
Sh-SI aan de oppervlakte zodat cSS-2-IBS(fs-I-2-S(Sh-SI )) = fs-I-2-S(cSI-2-IBI(
Sh-SI )) = Sh-IBS . Bijgevolg leiden we hieruit ook het IBI-schema Sh-IBI =
cSI-2-IBI(Sh-SI ) af, dat op natuurlijke verwant is met het Sh-IBS schema, name-
lijk door het feit dat fs-I-2-S(Sh-IBI ) = Sh-IBS . Op een analoge manier brengen
we ook de IBI-schema’s Hs-IBI en ChCh-IBI aan de oppervlakte, die aan de basis
liggen van de voorgestelde paring-gebaseerde IBS-schema’s [Hes03, CC03, Yi03].

Naast het analyseren van bestaande IBI- en IBS-schema’s, leiden we ook
enkele nieuwe schema’s af. We hebben publicaties in de literatuur gevonden
[OO90, OS90, FF02] die geen IBI- of IBS-schema’s definiëren, maar die wel
SI-schema’s definiëren waarvan wij aantonen dat ze converteerbaar zijn. Via
onze transformaties levert dit nieuwe IBI- en IBS-schema’s op waarvan we de
veiligheid analyseren.

Resultaten voor specifieke schema’s. Om de de nieuwe en bestaande IBI-
en IBS-schema’s veilig te bewijzen, rest ons enkel nog de veiligheid van onderlig-
gende cSI-schema’s te analyseren. Dit bleek echter een omvangrijke taak, want
alhoewel in sommige gevallen het cSI-schema reeds bewezen werd in de litera-
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Naam Oorsprong Naam-SI Naam-IBI Naam-SS Naam-IBS

imp-pa imp-aa imp-ca imp-pa imp-aa imp-ca uf-cma uf-cma

FS IBI,IBS [FS86, FFS88] [FS86] [FFS88] I I I I [PS00] [DKXY03]
ItR SI, SS [OO90, OS90] [Sch96] [Sch96] O I I O [PS00] [DKXY03]
FF SI,SS [FF02] [FF02] [FF02] [FF02] I I I [FF02] [DKXY03]

GQ IBI, IBS [GQ89] [GQ89] [BP02] [BP02] I I I [PS00] [DKXY03]
Sh IBS [Sha84] B A A I A A I I
Sh∗ SI B B B I I I I I
OkRSA SI, IBI, SS [Oka93] [Oka93] [Oka93] I I I I [PS00] [DKXY03]
Gir SI, IBI [Gir90, SSN98] A A A A A A A A

SOK IBS [SOK00] B A A I A A I I
Hs IBS [Hes03] B B B I I I [Hes03] [DKXY03]
ChCh IBS [CC03, Yi03] B B B I I I [CC03] [CC03]

Beth1 IBI [Bet88] B O O I O O I I
Beth t IBI [Bet88] O O O O O O O O
OkDL IBI [Oka93] I I I B B B I I
XDL SI, IBI I I I B B B I I

Figuur 5.2: Samenvatting van veiligheidsresultaten. Kolom 1 is de familienaam van een schemafamilie. Kolom 2 vermeldt
welk van de vier schema’s reeds voorkwam in de literatuur. (De andere schema’s brengen wij aan de oppervlakte.) In de
veiligheidskolommen wordt een bekend resultaat aangeduid met een referentie naar de publicatie waarin het behaald wordt. De
symbolen I, B, en A duiden allemaal op nieuwe resultaten behaald in deze thesis. Een I duidt op een veiligheidsbewijs behaald
door implicatie, hetzij door toepassing van een transformatie, hetzij door eenvoudige uitbreiding van bestaand werk. Een B

duidt op een volledig nieuw bewijs. Een A betekent dat we een aanval op het bewuste schema hebben gevonden, en een O

betekent dat de veiligheid onbekend is. In alle rijen behalve de twee laatste is het SI-schema converteerbaar. De eerste groep
schema’s zijn gebaseerd op factorisatie, de tweede op RSA, de derde op paringsfuncties en de laatste op discrete logaritmen.
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tuur, was dit vaak ook niet het geval. Bovendien zagen we ons genoodzaakt
de veiligheid van twee IBI-schema’s rechtstreeks te bewijzen, gezien deze niet
gebaseerd waren op een onderliggend cSI-schema.

We geven een samenvatting van onze resultaten in Figuur 5.2. Merk op
dat alle veiligheidsbewijzen voor SS-, IBI- en IBS-schema’s in het willekeurig-
orakelmodel plaatsvinden. We vatten onze resultaten hier kort samen.

Eenvoudige gevallen zijn de FS , ItR , FF , GQ , en OkRSA families, waar de
SI-schema’s reeds voorgesteld en bewezen werden in voorgaand werk [FFS88,
Sch96, FF02, BP02, Oka93].

Het Sh-SI schema blijkt een “spiegelbeeld” te zijn van GQ -SI , en is technisch
interessant omdat we aantonen dat het zero-knowledge eigenschappen bezit die
het op het eerste zicht niet lijkt te hebben. Op basis van die eigenschappen be-
wijzen we dat het schema imp-pa veilig is onder de RSA-veronderstelling, maar
een eenvoudige aanval toont aan dat het onveilig is onder actieve en concurrente
aanval. Een lichte variant Sh∗-SI op dit schema is echter niet enkel imp-pa on-
der dezelfde veronderstelling, maar is bovendien imp-aa en imp-ca veilig onder
de één-meer RSA-veronderstelling, volledig gelijkaardig aan het GQ -SI schema
[BP02].

Het IBI-schema van Girault [Gir90] werd eerder al aangevallen en gerepa-
reerd [SSN98], maar wij hebben nieuwe aanvallen gevonden op het gerepareerde
schema en breken daarmee alle schema’s in de familie.

We bewijzen imp-pa veiligheid van de paring-gebaseerde SOK -SI , Hs-SI en
ChCh-SI schema’s onder de CDH-veronderstelling, en imp-aa en imp-ca veilig-
heid onder de één-meer CDH-veronderstelling. We merken op dat het SOK -IBS
schema gedefinieerd via onze transformaties nauw verwant maar niet identiek is
aan het gepubliceerde schema [SOK00]. Dit duidt op de waarde van ons raam-
werk, gezien het onduidelijk is of het gepubliceerde IBS-schema [SOK00] uf-cma
veilig kan bewezen worden, terwijl onze transformaties wel uf-cma veiligheid ga-
randeren.

Gezien de afwezigheid van een valdeur voor discrete logaritmen, is het geen
evidente keuze om IBI-schema’s op te baseren. Toch bestaan er enkele: het (on-
bewezen) Beth t -IBI schema [Bet88] is geparametriseerd met een “sleutelmeer-
voudigheid” t ∈ {1, 2, . . .} en is gebaseerd op ElGamal handtekeningen [El 84].
Via een truuk slagen we erin aan te tonen dat het Beth1 -SI schema dat we aan
de oppervlakte brengen converteerbaar is, en we bewijzen dat Beth1 -SI imp-pa
veilig is onder een (vrij lichte, doch onbewezen) veronderstelling betreffende
ElGamal handtekeningen. We waren niet in staat Beth1 -SI te bewijzen of te
breken onder actieve en concurrente aanvallen. Ook hebben we geen veiligheids-
resultaten kunnen aantonen voor de Beth t familie voor t > 1.

Uitzonderingen. De laatste twee rijen van Figure 5.2 bevatten schema’s waar
ons raamwerk niet van toepassing is en directe analyses noodzakelijk zijn. Het
eerste is een voorheen onbewezen IBI-schema gebaseerd op discrete logaritmen
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OkDL-IBI [Oka93]. Alhoewel dit schema op een natuurlijke manier kan herleid
worden tot een SI-schema, is dit laatste niet converteerbaar. Desalniettemin
tonen we aan dat OkDL-IBI veilig is onder passieve, actieve en concurrente
aanval onder de discrete-logaritmeveronderstelling. Dit rechtstreekse bewijs is
ongetwijfeld het meest technische in dit hoofdstuk, en illustreert nogmaals het
nut van ons raamwerk dat voor de meeste gevallen de omslachtigheden van een
rechtstreeks bewijs vermijdt. Bovendien presenteren we een nieuw IBI-schema
XDL-IBI dat een iets efficiëntere variant is van het OkDL-IBI schema, en dat
gelijkaardige veiligheidseigenchappen heeft als dit laatste.

Gezien ze niet afkomstig zijn van cSI-schema’s, kunnen de IBS-schema’s
fs-I-2-S(OkDL-IBS) en fs-I-2-S(XDL-IBS) niet veilig bewezen worden op basis
van de veiligheidseigenschappen van de IBI-schema’s. We kunnen echter wel
onze gewijzigde efs-IBI-2-IBS transformatie toepassen op de IBI-schema’s, en
verkrijgen op die manier toch uf-cma veilige IBS-schema’s.

4 Transitieve Handtekeningen

4.1 Achtergrond

Het concept van transitieve handtekeningen werd gëıntroduceerd door Micali en
Rivest [MR02b]. Het probleem is het volgende: een ondertekenaar wil dynamisch
een grafe authenticeren, verbinding per verbinding, zodat eender wie (dus niet
enkel de ondertekenaar) vanuit twee handtekeningen σ1, σ2 voor aanliggende
verbindingen {i, j} en {j, k} zelf een derde handtekening σ3 kan berekenen voor
de rechtstreekse verbinding {i, k}. De geauthenticeerde grafe bestaat dus niet
enkel uit de verbindingen die expliciet getekend werden door de ondertekenaar,
maar is de volledige transitieve sluiting hiervan.

Micali en Rivest vermelden als mogelijke toepassingen militaire hiërarchische
bevelstructuren, waar elke knoop een militair personeelslid voorstelt, en een ge-
richte verbinding van i naar j betekent dat i het bevel voert over j; en ad-
ministratieve domeinen, waar knopen machines voorstellen, en een ongerichte
verbinding tussen i en j betekent dat i en j tot hetzelfde domein behoren. Een
echt overtuigende toepassing moet echter nog gevonden worden, en alhoewel het
waarschijnlijker is dat een dergelijke toepassingen gevonden wordt voor gerich-
te grafen, blijken (niet-triviale) gerichte transitieve handtekeningsschema’s veel
moeilijker te construeren dan ongerichte: tot nog toe werden geen ongerichte
schema’s voorgesteld, en in navolging van ons werk argumenteerde Hohenber-
ger [Hoh03] zelfs dat er ofwel een nieuwe, voorlopig ongekende algebräısche
structuur nodig is om dit te bereiken, ofwel een volledig nieuwe aanpak van het
probleem. Ons werk legt zich toe op ongerichte transitieve handtekeningen.

Een transitief handtekeningsschema (TS-schema) kan triviaal gerealiseerd
worden door als handtekening voor een verbinding {i, j} elke sequentie van
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getekende verbindingen te aanvaarden die een pad vormen van i naar j. De
onbeperkte lengte van een handtekening en het verlies aan privacy doordat de
handtekeningen informatie bevatten over hun geschiedenis, sluiten deze aanpak
echter uit. Het belangrijkste resultaat van Micali and Rivest [MR02b] is een
(niet-triviaal) transitief handtekeningsschema, hier DL-TS genoemd, dat be-
wijsbaar veilig is onder adaptieve aanval (zie Sectie 4.2 voor definities) onder
de veronderstelling dat het discrete-logaritmeprobleem niet efficiënt oplosbaar
is en dat een onderliggend SS-schema uf-cma veilig is. Ze beschrijven tevens een
RSA-gebaseerd schema, hier RSA-TS genoemd, en vermelden dat alhoewel het
veilig lijkt en alhoewel het bewijsbaar veilig is onder niet-adaptieve aanval, er
geen veiligheidsbewijs onder adaptieve aanval gekend is.

Voorafgaand aan ons werk hadden transitieve handtekeningen (veilig onder
adaptieve aanval) dus slechts één enkele realisatie, namelijk het DL-TS schema.
Het is de gewoonte in cryptografie op zoek te gaan naar nieuwe en alternatieve
realisaties van bestaande primitieven, zowel om efficiëntie-voordelen te berei-
ken, als om het bestaan van het primitief sterker theoretisch te onderbouwen
door middel van constructies gebaseerd op alternatieve moeilijke problemen.
Dit werk presenteert een aantal nieuwe schema’s die beide doelen bereiken, en
beantwoordt bovendien de open vraag betreffende het RSA-TS schema.

4.2 Definities en Veiligheidsnoties.

Transitieve handtekeningsschema’s. Alle grafen die we hier behandelen
zijn ongericht. Als G = (V,E) een grafe is, dan is de transitieve sluiting van

G de grafe G̃ = (V, Ẽ) waarbij {i, j} ∈ Ẽ als en slechts als er een pad is van i
naar j in G. De grafe G is transitief gesloten als hij gelijk is aan zijn transitieve
sluiting, oftewel als voor alle knopen i, j, k ∈ V zodat {i, j} ∈ E en {j, k} ∈ E,
er ook geldt dat {i, k} ∈ E. Merk op dat een transitief gesloten ongerichte grafe
gepartitioneerd is in disjuncte componenten zodat elke component een volledige
grafe is.

Een transitief handtekeningsschema (TS-schema) TS is een tupel van vier
polynomiale-tijd algoritmes (TKg,TSign,TVf,Comp) zodat:

• het gerandomiseerde sleutelgeneratie-algoritme TKg op invoer 1k, met k ∈
N de veiligheidsparameter, een sleutelpaar teruggeeft bestaande uit de
publieke sleutel tpk en de private sleutel tsk .

• het tekenalgoritme TSign als invoer de private sleutel tsk en twee kno-
pen i, j ∈ N neemt, en een originele handtekening σ teruggeeft voor de
verbinding {i, j}.

• het verificatie-algoritme TVf beslist, gegeven tpk , knopen i, j ∈ N en een
kandidaat handtekening σ, of σ een geldige handtekening is of niet.
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Schema Kost ondertekenen Kost verifiëren Kost samenstellen Lengte handtekening

DL-TS 2 stand. handt. 2 stand. verifs 2 opt. in Zq 2 stand. handt.
2 exp. in G 1 exp. in G 2 punten in G

2 punten in Zq

DL1m-TS 2 stand. handt 2 stand. verifs 1 opt. in Zq 2 stand. handt.
1 exp. in G 1 exp. in G 2 punten in G

1 point in Zq

RSA-TS 2 stand. handt. 2 stand. verifs O(|N |2) ops 2 stand. handt.
2 RSA encs 1 RSA enc. 3 punten in Z

∗
N

Fact -TS 2 stand. handt. 2 stand. verifs O(|N |2) ops 2 stand. handt.
O(|N |2) ops O(|N |2) ops 3 punten in Z

∗
N

Gap-TS 2 stand. handt. 2 stand. verifs O(|N |2) ops 2 stand. handt.

2 exp. in Ĝ 1 Sddh 3 punten in Ĝ

RSAH -TS 1 RSA dec. 1 RSA enc. O(|N |2) ops 1 punt in Z
∗
N

FactH -TS 2 vkwortels in Z
∗
N O(|N |2) ops O(|N |2) ops 1 punt in Z

∗
N

GapH -TS 1 exp. in Ĝ 1 Sddh O(|N |2) ops 1 punt in Ĝ

Figuur 5.3: Kostenvergelijking tussen transitieve handtekeningsschema’s. Het woord “stand.” verwijst naar operaties van het
onderliggende standaard handtekeningsschema, dat niet van toepassing is voor RSAH -TS , FactH -TS en GapH -TS . G stelt de
discrete-logaritmegroep voor van DL-TS en DL1m-TS , en N is een product van twee priemgetallen zoals gebruikt in RSA en
factorisatie-gebaseerde schema’s. Ĝ is een kloof-Diffie-Hellmangroep en Sddh is een uitvoering van het DDH-algoritme in Ĝ.
Gebruikte afkortingen zijn: “exp.” voor een machtsverheffing in de groep; “RSA enc.” voor een RSA encryptie; “RSA dec.” voor
een RSA decryptie met gegeven decryptie-exponent; “vkwortel” voor een vierkantswortel modulo N gegeven de priemfactoren
van N ; en “ops” voor het aantal elementaire bit-operaties in grote-O notatie.
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• het samenstellingsalgoritme Comp de publieke sleutel tpk , knopen i, j, k ∈
N en handtekeningen σ1, σ2 voor verbindingen {i, j} en {j, k} als invoer
neemt, en een handtekening σ3 voor verbinding {i, k} teruggeeft (of een
symbool ⊥ om aan te duiden dat het samenstellen gefaald is).

Correctheid van TS-schema’s. Natuurlijk verwachten we dat als σ een ori-
ginele handtekening is ten opzichte van tsk , dat dan σ ook een geldige handteke-
ning is ten opzichte van tpk . Een sluitende definitie vinden voor de correctheid
van het samenstellingsalgoritme is echter minder evident. Volgens de definitie
van Micali en Rivest [MR02b] mag de samenstelling van twee originele handteke-
ningen niet te onderscheiden zijn van een originele handtekening voor dezelfde
verbinding. Dit lijkt echter te impliceren dat samenstelling enkel werkt voor
originele handtekeningen, en recursieve samenstelling dus onmogelijk is.

We zouden, in navolging van Johnson et al. [JMSW02], kunnen eisen dat de
samenstelling van twee geldige handtekeningen steeds een derde geldige hand-
tekening oplevert, maar deze vereiste blijkt te sterk voor onze doeleinden: zowel
voor het DL-TS schema als voor onze schema’s bestaan er geldige handtekenin-
gen die na samenstelling een ongeldig handtekening opleveren. Het vinden van
zulke handtekeningen vereist wel het breken van het onderliggende SS-schema
en is dus computationeel onhaalbaar, maar toch zouden we de correctheids- en
veiligheidsdefinities liever niet met mekaar verweven. Daarom formuleren we een
correctheidsdefinitie via een recursieve vereiste die zegt dat zolang de origine-
le handtekeningen “legitiem” verkregen zijn, d.w.z. rechtstreeks van de onder-
tekenaar of door samenstelling van legitieme handtekeningen, de resulterende
handtekening geldig moet zijn.

Veiligheid van TS-schema’s. Een vervalser voor een TS-schema TS = (TKg,
TSign,TVf,Comp) is een algoritme F dat de publieke sleutel tpk als invoer krijgt
en een toegang heeft tot een handtekeningsorakel TSign(·, ·) = TSign(tsk , ·, ·),
waaraan F handtekeningen kan opvragen voor verbindingen naar zijn keuze.
Laat E de verzameling van randen {i, j} zijn waarvoor F een handtekening
heeft gevraagd, en laat V de verzameling zijn van alle betrokken knopen. Uit-
eindelijk geeft F knopen i′, j′ ∈ N en een vervalst handtekening σ′ terug. De
vervalser wint het spel als TVf(tpk , i′, j′, σ′) = 1 terwijl {i′, j′} niet binnen de
transitieve sluiting van G = (V,E) ligt. Het schema TS is transitief onvervals-
baar onder adaptieve gekozen-boodschap aanval (tu-cma veilig) als geen enkele
polynomiale-tijd tegenstander F een niet-verwaarloosbare kans heeft om dit spel
te winnen. Een zwakkere veiligheidsnotie voor TS-schema’s is transitieve onver-
valsbaarheid onder niet-adaptieve gekozen-boodschap aanval. Hierbij moet de
vervalser op voorhand beslissen welke verbindingen hij wil laten tekenen, en kan
hij zijn volgende bevraging dus niet laten afhangen van de waarde van de vorige
handtekeningen.

De knoopcertificatie-techniek. De aanpak van zowel het DL-TS als het
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RSA-TS schema is gebaseerd op knoopcertificaten. De private sleutel van de
ondertekenaar bevat de private sleutel van een SS-schema, en de publieke sleu-
tel bevat onder meer de overeenkomstige publieke sleutel van het SS-schema.
De ondertekenaar associeert met elke knoop i in de grafe een knoopcertificaat
bestaande uit een publiek label L(i) en een standaard handtekening op i‖L(i).
Het handtekening voor een verbinding bevat de knoopcertificaten van de eind-
punten en verbindingslabel δ. Verificatie van een handtekening gebeurt door de
standaard handtekeningen in de knoopcertificaten te verifiëren en de waarde van
het verbindingslabel te relateren aan die van de publieke labels. Samenstelling
van handtekeningen gebeurt door algebräısche bewerkingen op de verbindingsla-
bels.

Deze techniek is nuttig, maar brengt kosten met zich mee. Het tekenen van
een verbinding beslaat het berekenen van twee standaard handtekeningen, en de
lengte van een verbindingshandtekening, dat de twee knoopcertificaten bevat,
kan groot worden, ook al zijn de verbindingslabels vrij klein.

4.3 Transitieve Handtekeningen op basis van RSA

Het RSA-TS schema werd kort vermeld [MR02b] en volgt de knoopcertificatie-
techniek. Men kan bewijzen dat RSA-TS transitief onvervalsbaar is onder niet-
adaptieve gekozen-boodschap aanval onder de veronderstelling dat het RSA-
probleem moeilijk is en het onderliggende SS-schema veilig is. Er werd geen
adaptieve aanval op het schema gevonden, maar evenmin werd een veiligheids-
bewijs onder adaptieve aanval gegeven.

Deze situatie (namelijk een schema dat zowel aanval als bewijs lijkt te weer-
staan) is niet ongewoon in de cryprografie, en wij opperen dat ze te wijten is
aan het feit dat de veiligheid van het schema gebaseerd is op eigenschappen van
RSA die verder gaan dan gewone éénwegsheid. In het licht hiervan zijn we op
zoek gegaan naar zwaardere veronderstellingen voor de RSA-functie, en hebben
we kunnen aantonen dat RSA-TS transitief onvervalsbaar is onder adaptieve
gekozen-boodschap aanval als het één-meer RSA-probleem moeilijk is en het
onderliggende SS-schema veilig is.

4.4 Nieuwe Transitieve Handtekeningsschema’s

Het Fact -TS schema. Na het RSA-TS schema gezien te hebben, zou men zich
kunnen afvragen of er een TS-schema bestaat dat bewijsbaar tu-cma veilig is
onder de veronderstelling dat het gewone RSA-probleem moeilijk is. We beant-
woorden deze vraag in positieve zin door het Fact -TS schema voor te stellen
en veilig te bewijzen onder de (nog zwakkere) factorisatieveronderstelling. Het
bewijs bevat een delicaat informatie-theoretisch lemma dat garandeert dat vo-
rige handtekeningen de aanvaller geen informatie geven over welke van twee
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Schema Bewijsbaar veilig onder adaptieve gekozen-
boodschap aanval onder veronderstelling dat

WO?

DL-TS Veiligheid van SS-schema Nee
Moeilijkheid van discrete logaritmen

DL1m-TS Veiligheid van SS-schema Nee
Moeilijkheid van één-meer discrete logaritmen

RSA-TS Veiligheid van SS-schema Nee
Moeilijkheid van één-meer RSA-probleem

Fact -TS Veiligheid van SS-schema Nee
Moeilijkheid van factoriseren

Gap-TS Veiligheid van SS-schema Nee
Moeilijkheid van één-meer CDH-probleem
in kloof-DH-groepen

RSAH -TS Moeilijkheid van één-meer RSA-probleem Ja

FactH -TS Moeilijkheid van factoriseren Ja

GapH -TS Moeilijkheid van één-meer CDH-probleem Ja
in kloof-DH-groepen

Figuur 5.4: Bewijsbare veiligheidseigenschappen van transitieve handtekeningssche-
ma’s. We vermelden de veronderstellingen onder dewelke een veiligheidsbewijs voor
transitieve onvervalsbaarheid onder adaptieve gekozen-boodschap aanval bestaat, en
of het willekeurig-orakelmodel gebruikt wordt in het bewijs.

vierkantswortels de ondertekenaar in gedachten heeft.

Met betrekking tot kosten geassocieerd aan een TS-schema zijn we gëınteres-
seerd in de computationele kost van het tekenen van een verbinding, van het ve-
rifiëren van een handtekening en van het samenstellen van twee handtekeningen,
en in de lengte van een handtekening. Figuren 5.3 en 5.4 vatten respectievelijk
de kosten en bewijsbare veiligheidseigenschappen van de verschillende schema’s
samen.

Daar Fact -TS eveneens de knoopcertificatie-techniek volgt, beloopt het de-
zelfde kosten als de DL-TS en RSA-TS schema’s door het gebruik van het SS-
schema. Zoals Figuur 5.3 illustreert is het echter computationeel goedkoper dan
DL-TS en RSA-TS wat betreft het tekenen en verifiëren, omdat het de kosten te-
rugbrengt van kubisch (machtsverheffing) tot kwadratisch (vermenigvuldigingen
en een inverse).

Het DL1m-TS schema. Het DL-TS schema [MR02b] gebruikt twee genera-
toren. Wij beschrijven een iets eenvoudigere variant, DL1m-TS genaamd, die
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slechts één generator gebruikt. Zoals gëıllustreerd in Figuren 5.3 en 5.4 biedt
het enkele lichte performantieverbeteringen ten opzichte van DL-TS , maar is
het slechts bewijsbaar veilig onder de moeilijkheid van het één-meer discrete-
logaritmeprobleem.

Het Gap-TS schema. We presenteren tevens een TS-schema gebaseerd op kloof-
Diffie-Hellmangroepen genaamd Gap-TS , en bewijzen dat het veilig is onder de
één-meer CDH-veronderstelling. Dit schema heeft eigenlijk geen rechtstreeks
belang, omdat het moet onderdoen voor DL1m-TS zowel qua veiligheidsveron-
derstellingen en performantie. De waarde van het Gap-TS schema is dat er, in
tegenstelling tot DL1m-TS en DL-TS , een hash-gebaseerde verandering op kan
toegepast worden die we hierna beschrijven, en we zullen zien dat het resulte-
rende schema GapH -TS de kortste handtekeningen zal hebben van alle schema’s
die we behandelen.

4.5 Eliminatie van Knoopcertificaten door Hashfuncties

Het RSAH -TS schema. Met behulp van hashfuncties kunnen we de knoop-
certificaten en alle daarbij horende kosten elimineren uit het RSA-TS schema.
De techniek bestaat erin het publieke label van een knoop i niet te laten kiezen
door de ondertekenaar, maar te definiëren als de uitvoer van een publieke hash-
functie toegepast op i, en RSA decryptie te gebruiken om verbindingslabels te
berekenen. We bewijzen dat het resulterende schema RSAH -TS tu-cma veilig is
onder de één-meer RSA-veronderstelling in het willekeurig-orakelmodel.

Het FactH -TS schema. Het feit dat kwadrateren modulo een samengesteld ge-
tal een valdeur-éenwegsfunctie is, maakt het FactH -TS schema geschikt voor een
gelijkaardige eliminatie van de knoopcertificaten. We introduceren het FactH -TS
schema waar het publieke label L(i) van een knoop i opnieuw bepaald wordt door
de uitvoer van een hashfunctie geëvalueerd op i. We bewijzen dat het FactH -TS
schema tu-cma veilig is in het willekeurig-orakelmodel onder de veronderstelling
dat de onderliggende modulus moeilijk te factoriseren is.

Zoals vermeld in Figuur 5.3 is de belangrijkste kostenbesparing het vermijden
van alle kosten gerelateerd aan het SS-schema. Voor het ondertekenen moeten
nu echter vierkantswortels berekend worden, hetgeen qua kost overeenkomt met
een machtsverheffing modulo N .

Het GapH -TS schema. Ook het Gap-TS schema kan bevrijd worden van de
knoopcertificaten, hetgeen het GapH -TS schema oplevert waarvan de eigen-
schappen getoond worden in Figuur 5.3. De handtekening bestaat uit een enkel
groepselement, en door de compacte representatie van kloof-DH-groepen be-
tekent dit dat het GapH -TS schema de kortste handtekeningen heeft van alle
besproken schema’s.
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5 Conclusie

In deze thesis hebben we nieuwe bewijsbaar veilige schema’s voorgesteld voor een
aantal cryptografische problemen, en hebben we veiligheidsbewijzen opgesteld
voor bestaande schema’s waarvoor een dergelijk bewijs ontbrak. Waar moge-
lijk hebben we algemeen aanvaarde veiligheidsnoties gehanteerd, en in de enkele
gevallen dat dergelijke noties niet voorhanden waren hebben we zelf nieuwe,
nuttige maar haalbare veiligheidsnoties geformuleerd. We hebben ook abstracte
constructies en transformaties voorgesteld die het bewijzen van concrete sche-
ma’s aanzienlijk vergemakkelijken, en die bovendien bijdragen aan het begrip
van de algemene principes die aan de basis ligt van het ontwerp van gerelateerde
schema’s.

Meer specifiek hebben we in Sectie 3 onze resultaten voor identiteitsgeba-
seerde identificatieschema’s en handtekeningsschema’s samengevat, en die voor
transitieve handtekeningsschema’s in Sectie 4. In wat volgt geven we nog enkele
suggesties voor verder onderzoek.

Opvullen van leemtes in Figuur 5.2. Ondanks de aanzienlijke inspannin-
gen die we gespendeerd hebben aan het onderzoeken van de veiligheidseigen-
schappen van schema’s in Sectie 4, blijven een aantal vakjes in Figuur 5.2 onbe-
antwoord. Om de veiligheid van het ItR -SI schema onder concurrente aanval te
onderzoeken zou men de details van het bewijs onder parallelle aanval [Sch96]
moeten uitspitten en verifiëren of een gelijkaardig argument opgaat voor con-
currente aanvallen.

Een tweede reeks open vakjes betreft de Beth t familie. Voor het bijzondere
geval van het Beth1 -SI schema zijn we erin geslaagd veiligheid onder passieve
aanval (en daardoor veiligheid van het bijhorend SS- en IBS-schema) te be-
wijzen, maar de veiligheid onder actieve en concurrente aanval blijft een open
probleem. Voor de Beth t familie met t > 1 is het niet eens zeker of het SI-schema
converteerbaar is, en is zelfs veiligheid onder passieve aanval een open probleem.

Strakkere reducties door rechtstreekse bewijzen. Het raamwerk van
transformaties in Figuur 5.1 is een krachtig hulpmiddel om asymptotische vei-
ligheid van IBI- en IBS-schema’s aan te tonen, maar de algemeenheid ervan
verhindert schema-specifieke optimizaties om een “strakkere” reductie te beko-
men. De reductie in een bewijs wordt strak genoemd als de slaagkans om het
onderliggende primitief te breken ongeveer even groot is als die om het voorge-
stelde schema te breken. Dit is echter niet het geval voor de algemene bewijzen
in ons raamwerk, hetgeen tot uiting komt als we concrete waarden invullen in
de reductievergelijkingen. Om bijvoorbeeld het Sh-IBS schema even veilig te
maken als het Sh-SI schema met een 1024-bit sleutel tegen een tegenstander
die zijn beide willekeurige orakels 260 maal mag bevragen en 230 handtekenin-
gen mag opvragen, moeten we het IBS-schema in principe instantiëren met een
sleutel van 6701 bits. Dit betekent niet dat het schema onveilig is voor kleinere
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sleutels, maar betekent wel dat we er strikt gezien geen uitspraak over kunnen
doen. Strakkere bewijzen kunnen wellicht bekomen worden door de techniek
van Coron [Cor00] toe te passen op rechtstreekse bewijzen voor concrete IBI en
IBS-schema’s.

Identiteitsgebaseerde cryptografie zonder willekeurige orakels.

Het feit dat de veiligheidsbewijzen van zowel de cSI-2-IBI en de cSS-2-IBS trans-
formaties in het willekeurig-orakelmodel plaatsvinden lijkt geen toeval te zijn.
Afgezien van enkele triviale maar inefficiënte oplossingen, hebben alle geken-
de identiteitsgebaseerde schema’s een willekeurig orakel nodig om de (niet-
willekeurige) identiteitsstring om te zetten naar een uniform verdeeld element
van een bepaalde verzameling. Alhoewel redelijk efficiënte schema’s zonder wille-
keurige orakels bestaan voor andere primitieven zoals standaard publieke-sleutel
encryptie [CS98] en handtekeningen [CS00, GHR99], bestaan zulke identiteits-
gebaseerde schema’s enkel onder de vorm van triviale oplossingen (zoals bij-
voorbeeld IBI- en IBS-schema’s) of zelfs helemaal niet (zoals bijvoorbeeld iden-
titeitsgebaseerde encryptie). Met het oog op de bezwaren tegen het willekeurig-
orakelmodel geformuleerd in Sectie 1, zou het interessant zijn het bestaan te
onderzoeken van praktische en efficiënte identiteitsgebaseerde cryptografie in
het standaard model.

Gerichte transitieve handtekeningen. Alle TS-schema’s die we bespro-
ken hebben in Sectie 4 werken enkel voor ongerichte grafen. Als echt overtuigen-
de toepassingen van transitieve handtekeningen gevonden worden, zullen deze
waarschijnlijker betrekking hebben op gerichte grafen dan op ongerichte. Op dit
ogenblik bestaan er geen constructies voor gerichte TS-schema’s, en Hohenber-
ger [Hoh03] argumenteert zelfs dat dergelijke schema’s zeer moeilijk te constru-
eren kunnen zijn: zij toont aan dat het bestaan van een dergelijk schema een
algebräısche structuur impliceert waarvan voorlopig geen voorbeelden gekend
zijn. Haar resultaat geldt echter enkel voor schema’s die de knoopcertificatie-
techniek volgen, en het is niet ondenkbaar dat gerichte TS-schema’s bestaan
volgens een totaal andere aanpak, zonder daarvoor exotische wiskundige struc-
turen te moeten impliceren.

Comprimeren van certificaatketens. Certificaatketens worden gebruikt
om de geldigheid van een publieke sleutel na te gaan aan de hand van een
vertrouwd wortelcertificaat dat typisch ingebed wordt in de software van de ge-
bruiker. Bij hiërarchisch gestructureerde publieke-sleutelinfrastructuren (PKI)
tekent elke certificatie-authoriteit (CA) de publieke sleutel van de volgende. Een
certificaatketen die de publieke sleutel pkn van een gebruiker relateert aan een
wortelcertificaat met publieke sleutel pk0 bevat n handtekeningen en n publieke
sleutels, als volgt:

pkn ‖ Sign(skn−1, pkn) ‖ pkn−1 ‖ Sign(skn−2, pkn−1) ‖ . . . ‖ pk1 ‖ Sign(sk0, pk1).
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Ondanks de analogie tussen grafen en CA-bomen, kunnen transitieve handte-
keningen niet toegepast worden om deze ketens te comprimeren tot een enkele
handtekening, omdat de samen te stellen handtekeningen getekend zijn onder
verschillende sleutels.

Zogenaamde aggregaathandtekeningen [BGLS03, LMRS] zijn beter geschikt,
maar hebben nog steeds alle publieke sleutels nodig tijdens de verificatie, het-
geen resulteert in de aanzienlijk kortere maar nog steeds lineaire certificaatketen

pkn ‖ pkn−1 ‖ . . . ‖ pk1 ‖ σ .

Uiteindelijk zouden we de certificaatketen nog verder willen reduceren tot

pkn ‖ σ,

waar σ kan geverifieerd worden met behulp van pkn en pk0 alleen. Daartoe
hebben we een primitief nodig met een speciaal soort samenstellingsfunctie die
toelaat een “sleutelpaar ertussenuit te knijpen”: gegeven een handtekening voor
boodschap M onder sk1 en een handtekening voor pk1 onder pk2, moet het
mogelijk zijn een derde handtekening te construeren die boodschap M recht-
streeks authenticeert onder pk2. Er zijn echter geen constructies gekend die een
dergelijke functionaliteit bieden.
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