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Abstract. This chapter gives an overview of the literature on identity-

based signature (IBS) schemes, from Shamir’s seminal scheme to the
current state-of-the-art. Rather than presenting all schemes separately,

we present three generic transformations that together cover the ma-

jority of known IBS schemes as special cases. The first transformation
follows a certification approach based on standard signatures; the sec-

ond is a transformation in the random oracle model from “convertible”
identification schemes; and the third is based on hierarchical identity-

based encryption. We also discuss a number of direct schemes that es-

cape being covered by any of the generic transformations. Finally, we
show how the principles of the first transformation can be extended to

a hierarchical setting and to IBS schemes with special properties.
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1. Introduction

Digital signatures are among the most basic primitives in cryptography, providing
authenticity, integrity, and non-repudiation in an asymmetric setting. In their
most basic form, each user in the system generates his own key pair consisting
of a public key and a corresponding secret key, and the user is assumed to be
uniquely identified by his public key. In the real world however, users are generally
not identified by randomly generated keys, but by more meaningful identities like
their names or email addresses. To map public keys to real-world identities, a so-
called public-key infrastructure (PKI) needs to be set up, for example involving
a hierarchy of trusted certification authorities (CAs) that can certify public keys
as belonging to a certain user.

In the identity-based setting, as proposed by Shamir in 1984 [32], the public
key of a user simply is his identity, simplifying the PKI requirements. The cor-
responding secret key is issued by a trusted key generation center (KGC), who
derives it from a master secret that only the KGC knows, and who is assumed to
have an out-of-band way to verify the identity of the user. This eliminates some of
the costs associated to PKIs and certificates, and opens the way to more efficient
schemes.

From a security point of view, the major drawback of identity-based cryptog-
raphy is the inherent key escrow property: the KGC can derive the secret keys of



all users in the system, and must therefore be trusted not to abuse this power.
This is unlike a traditional PKI, where the CA only issues certificates on user-
generated public keys, but does not know the corresponding secret keys. While
most people find it a discomforting thought that a malafide KGC can sign any
message on their behalf, one should be aware that the same type of fraud is pos-
sible in the public-key setting as well. Namely, since the certificate is usually sent
along with the signature, a cheating CA can always generate a fake certificate for
a public key of which it knows the corresponding secret key, and thereby create
valid signatures. The victim could try to prove his innocence by showing his real
certificate to a judge, but nothing prevents the CA from claiming that the user
registered two different public keys. The escrow property is therefore not so much
an issue for signatures as it is for encryption, where a malafide KGC can actually
decrypt ciphertexts intended for any of its users. So even though there is no le-
gitimate use for escrow of signing keys, as already mentioned in the introduction
chapter, a limited form of key escrow is inherently present in both PKI-based and
ID-based signature schemes.

Identity-based signatures (IBS) also seem to be much “easier” to achieve
than identity-based encryption (IBE), of which only few instantiations are known.
In contrast, many practical instantiations of IBS schemes have been known for
decades, including the scheme in Shamir’s seminal paper from 1984 [32]. In
this chapter, we give an overview of the state-of-the-art in IBS schemes. We
present three generic transformations to build IBS schemes from standard sig-
nature schemes, from a special class of identification schemes, and from hierar-
chical identity-based encryption schemes, respectively. With each transformation,
we discuss some of its most interesting concrete instantiations, and compare the
efficiency and security properties of all these schemes. Finally, we show how the
first transformation can also be applied to obtain identity-based variants of sig-
nature schemes with special properties, including blind, threshold, and verifiably
encrypted signatures.

2. Definition of Identity-Based Signatures

We first introduce some notation. If x1, . . . , xn are bit strings, then we denote by
x1‖ . . . ‖xn a string encoding of x1, . . . , xn from which the constituent objects are
uniquely recoverable. If x is a string, then |x| denotes its length, and if S is a set,
then |S| is its cardinality. If A is a randomized algorithm, then y $← A(x1, x2, . . .)
means that A has inputs x1, x2, . . . and that y is assigned the output of A when
run on a fresh random tape.

We measure the resources of an adversary, such as its running time and its
number of oracle queries, asymptotically in terms of an underlying security pa-
rameter k. A function ν(k) is said to be negligible (in k) if for all c ∈ N there
exists kc ∈ N such that ν(k) < k−c for all k > kc.

An identity-based signature (IBS) scheme is a tuple of algorithms IBS =
(Setup,KeyDer,Sign,Vf) with running time polynomial in the security parameter
k. The first three may be randomized but the last is not. The trusted key distribu-
tion center runs the setup algorithm Setup on input 1k to obtain a master public



and secret key pair (mpk ,msk). (Here, 1k is the unary notation of the security
parameter k.) To generate the secret signing key usk for the user with identity
id ∈ {0, 1}∗, it runs the key derivation algorithm KeyDer on input msk and id .
The signing key is assumed to be securely communicated to the user in question.
On input usk and a message M , the signing algorithm Sign returns a signature
σ of M . On input mpk , id ,M , and a signature σ, the verification algorithm Vf
returns 1 if σ is valid for id and M , and returns 0 otherwise. Correctness requires
that Vf(mpk , id ,M ,Sign(usk ,M )) = 1 with probability one for all k ∈ N and
id ,M ∈ {0, 1}∗ whenever the keys mpk ,M , usk are generated as indicated above.

For security we consider the notion of existential unforgeability under chosen-
message and chosen-identity attack (uf-cma) [22]. Security is defined through an
experiment with a forger F and parameterized with the security parameter k. The
experiment begins with the generation of a fresh master key pair (mpk ,msk) $←
Setup(1k). The forger F is run on input the master public key mpk , and has access
to the following oracles:

• KeyDer(·): On input identity id ∈ {0, 1}∗, this oracle returns a secret signing
key usk $← KeyDer(msk , id).

• Sign(·, ·): On input identity id ∈ {0, 1}∗ and message M ∈ {0, 1}∗, this
oracle returns a signature σ $← Sign(usk ,M ) where usk $← KeyDer(msk , id).

At the end of its execution, the forger outputs identity id∗, message M ∗ and a
forged signature σ∗. The forger is said to win the game if Vf(mpk , id∗,M ∗, σ∗) = 1
and F never queried KeyDer(id∗) or Sign(id∗,M ∗). The advantage Adveuf-cma

IBS ,F (k)
is defined as the probability that F wins the game, and IBS is said to be euf-cma
secure if Adveuf-cma

IBS ,F (k) is negligible in k for all polynomial-time forgers F.

3. The Certification Approach

Unlike identity-based encryption, there is a very natural way to build identity-
based signatures from more basic cryptographic tools by using certificates, as
already pointed out in Chapter 1. This may sound paradoxical since one of the
primary purposes of identity-based cryptography is to avoid certificates, but cer-
tification here refers to a technique, not to a PKI. The idea is simply that the
a user’s secret key includes a secret key of a standard signature scheme and a
certificate for the corresponding public key, i.e., a standard signature from the
authority that links the user’s identity to that public key. To accomplish IBS, the
user signs messages using the secret signing key, and appends to the signature his
public key and certificate.

This straightforward construction has long been folklore in the research com-
munity, and was explicitly mentioned in [22,17,3]. The construction is important
however as a benchmark, relative to which the efficiency of direct IBS schemes
must be measured. Moreover, from a foundational point of view, the certificate-
based construction shows that IBS schemes can be built in the standard model
from one-way functions [31]. This is in stark contrast with identity-based encryp-
tion, for which the answer to such fundamental questions is still unknown.



3.1. Standard Signature Schemes

Before giving more details about the construction, we recall the syntax and se-
curity definitions of standard signature (SS) schemes [23]. It is defined as a tuple
of polynomial-time algorithms SS = (KeyGen,Sign,Vf). The randomized key gen-
eration algorithm KeyGen on input 1k generates a key pair (pk , sk). The signer
creates a signature on a message M via σ

$← Sign(sk ,M ), and the verifier can
check the validity of a signature by testing whether Vf(pk ,M , σ) = 1. Correctness
requires that Vf(pk ,M ,Sign(sk ,M )) = 1 with probability one for all M ∈ {0, 1}∗.

Security is defined through the notion of existential unforgeability under
chosen-message attack (euf-cma), described by the following game with a forger
F. The forger is run with a fresh public key pk as input, and is given access to a
signing oracle for the corresponding secret key sk . It is said to win the game if
it can output a pair (M ∗, σ∗) such that Vf(pk ,M ∗, σ∗) = 1 and it never queried
M ∗ from the signing oracle. The advantage Adveuf-cma

SS ,F (k) is defined as the prob-
ability that F wins this game, and SS is said to be euf-cma secure if this is a
negligible function in k for all polynomial-time forgers F.

3.2. The SS-2-IBS Transformation

Given a standard signature scheme SS = (KeyGen,Sign,Vf), one can build a
certificate-based IBS scheme Cert -IBS = (Setup,KeyDer,Sign′,Vf ′) = SS-2-IBS(SS)
as follows. One can easily prove that if SS is euf-cma secure, then Cert -IBS is
euf-cma secure as well.

Scheme 1 The certificate-based IBS scheme Cert -IBS

Algorithm Setup(1k):
(mpk ,msk) $← KeyGen(1k)
return (mpk ,msk)

Algorithm KeyDer(msk , id):
(pk , sk) $← KeyGen(1k) ; cert $← Sign(msk , pk‖id)
return usk ← (sk , pk , cert)

Algorithm Sign′(usk ,M ):
Parse usk as (sk , pk , cert) ; σ

$← Sign(sk ,M )
return σ′ ← (σ, pk , cert)

Algorithm Vf ′(mpk , id ,M , σ′):
Parse σ′ as (σ, pk , cert)
If Vf(pk ,M , σ) = 1 and Vf(mpk , pk‖id , cert) = 1 then d← 0 else d← 1
return d

Since there are numerous constructions of euf-cma secure SS schemes without
random oracles [21,14,5], we obtain from the above IBS schemes without random
oracles. Given that the existence of euf-cma secure SS schemes is equivalent to
the existence of one-way functions [31], an easy corollary says that euf-cma secure
IBS schemes exist if and only if one-way functions exist.



When instantiated with an efficient SS scheme, the SS-2-IBS transformation
yields fairly efficient IBS schemes. Signing costs the same as for the underlying
SS scheme, and verification comes at twice the cost of the SS scheme. The size
of the signature increases due to inclusion of the certificate. The sole goal of the
direct IBS schemes presented in this chapter is therefore to reduce costs below
that of even the best instantiations of the SS-2-IBS transform.

3.3. Instantiations

The main advantage of the certificate-based approach from is its generality. The
efficiency and security properties depend highly on the underlying SS scheme
being used. For example, to obtain IBS schemes with security in the standard
model, one can use any of the standard-model SS schemes of [21,14,5]. To save
on signature size, one can instantiate the scheme with short BLS signatures [10].
The IBS schemes thus obtained are not the most efficient, but they may be an
interesting alternative in case for example fast SS implementations are readily
available.

4. Constructions from Identification Schemes

A second generic transformation yielding more efficient IBS schemes was proposed
by Bellare, Namprempre, and Neven [3]. The transform works for a particular class
of three-move identification schemes called convertible identification schemes. In-
stances of such schemes can be found based on various cryptographic assump-
tions such as RSA, factoring, and pairings. The transformation itself bears a lot
in common with the Fiat-Shamir transform [19] that turns a three-move identifi-
cation scheme into a standard (i.e., not identity-based) signature scheme. Bellare
et al. proved the security of the transformation in the random oracle model, and
gave an extensive overview of instantiations that either appeared in the literature
as identification schemes, or that appeared as IBS schemes directly but that in
retrospect can be seen as being derived from a convertible identification scheme.

4.1. Canonical Convertible Identification Schemes

We first recall the definition of standard identification (SI) schemes, and then
define a particular class of schemes to which the transform applies. A SI scheme
is a tuple of polynomial-time algorithms SI = (KeyGen,P,V). The key generation
algorithm KeyGen, on input the security parameter 1k, outputs a fresh key pair
(pk , sk). The prover and verifier algorithms P and V are interactive algorithms
that together form the identification protocol. The prover P is run with the secret
key sk as initial input, and interacts with the verifier V that gets the public key pk
as initial input. At the end of the interaction, V outputs 0 or 1 indicating whether
the prover was successfully identified. Correctness requires that V outputs 1 for
all honest provers.

For security, we focus on the relatively weak notion of resistance against
impersonation under passive attacks (imp-pa), since this notion suffices for our
purposes of building IBS schemes. The adversary A, also called an impersonator,



gets as input a fresh public key pk , and has access to a transcript oracle that on
each invocation returns the transcript of an interaction between the P(sk) and
V(pk) algorithms. (It is easy to see that the protocol has to be randomized for
the scheme to be secure, so the generated transcripts will be different at each
invocation.) The impersonator A can then interact with an instance of V(pk),
and wins the game if the latter outputs 1. The advantage Advimp-pa

SI ,A (k) is the
probability that A wins, and SI is said to be imp-pa secure if the advantage is
negligible for all polynomial-time adversaries A.

Before defining convertibility of SI schemes, we need to introduce the concept
of trapdoor-samplable relations.

Definition 4.1 A family of trapdoor-samplable relations F is a triplet of polynomial-
time algorithms (TDG,Smp, Inv) such that the following properties hold:

• Efficient generation: On input 1k, TDG outputs the description of a relation
R ⊆ Dom× Rng together with its trapdoor information t;

• Samplability: The algorithm Smp, on input the description of a relation R,
returns a uniformly random couple from R;

• Inversion: On input the description of a relation R, the corresponding
trapdoor t, and an element y ∈ Rng, the randomized algorithm Inv outputs
a random element of R−1(y);

• Regularity: For every relation R in the family, there is an integer d such
that |R−1(y)| = d for all y ∈ Rng.

A SI scheme SI = (KeyGen,P,V) is said to be convertible (or a cSI scheme) if
its key-generation process is underlain by a family of trapdoor-samplable relations.
More specifically, there must exist a family F = (TDG,Smp, Inv) such that the
keys generated by KeyGen are of the form pk = (R, y) and sk = (R, x) distributed
according to

(R, t) $← TDG(1k) ; (x, y) $← Smp(R) .

A cSI scheme SI = (KeyGen,P,V) is said to be canonical if it follows a three-
move structure where the prover initiates the communication with a “commit-
ment” cmt distributed uniformly over a set CmtSet(R) possibly depending on
the relation embedded in the public and secret keys; the verifier sends back a
“challenge” ch chosen uniformly from a set ChSet(R); the prover replies with a
“response” rsp; and the verifier’s decision to accept or reject is a deterministic
function dec(pk , cmt ‖ ch ‖ rsp) ∈ {0, 1} of the public key and the communication
transcript. We require that 1/|CmtSet(R)| is negligible.

4.2. The cSI-2-IBS Transformation

A canonical cSI scheme directly yields a SS scheme through the well-known Fiat-
Shamir transform [19]; the resulting SS scheme is euf-cma secure in the ran-
dom oracle model if the underlying SI scheme is imp-pa secure [1]. To obtain
an IBS scheme from a canonical cSI scheme SI = (KeyGen,P,V), consider the
scheme IBS = (Setup,KeyDer,Sign,Vf) = cSI-2-IBS(SI ) as given below, where



H : {0, 1}∗ → Rng and G : {0, 1}∗ → ChSet(R) are hash functions, modeled as
random oracles, whose range depends on the relation R. Bellare et al. [3] showed
that if SI is imp-pa secure, then cSI-2-IBS(SI ) is euf-cma secure in the random
oracle model.

Scheme 2 The scheme IBS = cSI-2-IBS(SI ).

Algorithm Setup(1k):
(R, t) $← TDG(1k) ; mpk ← R ; msk ← (R, t)
return (mpk ,msk)

Algorithm KeyDer(msk , id):
(R, t)← msk ; x

$← Inv(R, t,H(id)
return usk ← (R, x)

Algorithm Sign(usk ,M ):
(R, x)← usk ; cmt $← P(usk) ; ch ← G(cmt‖M ) ; rsp ← P(ch)
return σ ← (cmt , rsp)

Algorithm Vf(mpk , id ,M , σ):
R ← mpk ; (cmt , rsp)← σ ; pk ← (R,H(id)) ; ch ← G(cmt‖M )
return dec(pk , cmt‖ch‖rsp)

4.3. Instantiations

As many as twelve different suitable cSI schemes were surfaced in [3] based on
factoring, RSA, pairings, and discrete logarithms. These give rise to twelve differ-
ent IBS schemes through the cSI-2-IBS transform. As an example, we highlight
here the original IBS scheme proposed by Shamir in 1984 [32].

Let Krsa be an RSA key generator that on input 1k outputs a modulus N
that is the product of two distinct odd primes, and exponents e, d such that
ed = 1 mod (p− 1)(q − 1) and such that e > 2l(k) for some function l(·). We say
that the RSA function associated to Krsa is one-way if

Advrsa
Krsa,A(k) = Pr

[
xe = y mod N : (N, e, d) $← Krsa(1k) ; y $← Z∗N ;

x← A(1k, N, e, y)

]
is negligible in k for all polynomial-time algorithms A. First consider the identi-
fication scheme Sh-SI given in Scheme 3.

To see why this SI scheme is convertible, observe the family of trapdoor-
samplable relations described by pairs (N, e) and corresponding trapdoor d
such that R = {(x, y) ∈ Z∗N

2 : y = xe mod N}. It is also canonical with
CmtSet(N, e) = Z∗N and ChSet(N, e) = {0, 1}l(k). Applying the cSI-2-IBS trans-
formation yields the Sh-IBS scheme given in Scheme 4, which is exactly the
scheme from [32].

The Sh-SI scheme was shown [3] to be imp-pa secure if the RSA function
associated to Krsa is one-way. The Sh-IBS scheme is therefore euf-cma secure
under the same assumption.



Scheme 3 The SI scheme underlying Shamir’s IBS scheme.

Algorithm KeyGen(1k):
(N, e, d) $← Krsa(1k) ; x

$← Z∗N ; y ← xe mod N
pk ← (N, e, y) ; sk ← (N, e, x)
return (pk , sk)

Algorithm P(sk): Algorithm V(pk):
Parse sk as (N, e, x) Parse pk as (N, e, y)
t

$← Z∗N ; T ← te mod N T -
c� c

$← {0, 1}l(k)

s← xtc mod N s - If se = yT c mod N
then d← 1 else d← 0
return d

Scheme 4 Shamir’s IBS scheme Sh-IBS .

Algorithm Setup(1k):
(N, e, d) $← Krsa(1k) ; mpk ← (N, e) ; msk ← (N, e, d)
return (mpk ,msk)

Algorithm KeyDer(msk , id):
Parse msk as (N, e, d) ; x← H(id)d mod N
return usk ← (N, e, x)

Algorithm Sign(usk , id ,M ):
(N, e, x)← usk ; t

$← Z∗N ; T ← te mod N ; c← G(T‖M ) ; s← xtc mod N
return σ ← (T, s)

Algorithm Vf(mpk , id ,M , σ):
(N, e)← mpk ; (T, s)← σ
If se = H(id)TG(T‖M ) mod N then d← 1 else d← 0
return d

Other instantiations of the cSI-2-IBS transform sketched in [3] include
the RSA-based Guillou-Quisquater (GQ -IBS) scheme [25], the factoring-based
iterated-root (ItR -IBS) scheme [19,18,29], and the pairing-based Cha-Cheon
(ChCh-IBS) scheme [11,34]. We refer to [3] for a more complete overview. The
BNN -IBS [3] and BBMQ -IBS [2] schemes bear some similarity to schemes de-
rived via the cSI-2-IBS transform, but fail to be captured by it. They were proved
secure in the random oracle model under the discrete logarithm assumption and
the q-strong Diffie-Hellman assumption, respectively.

5. Constructions from Hierarchical Identity-Based Encryption

As noted by Naor [7, Section 6] and formalized in [15], the key derivation of
an identity-based encryption (IBE) scheme immediately gives rise to a standard



signature scheme. Similarly, Gentry and Silverberg [22] observed that any two-
level hierarchical identity-based encryption (HIBE) scheme (which is a natural
extension of an IBE allowing for hierarchical key delegation) can be transformed
into an IBS scheme. We revisit their transformation in this section.

5.1. Hierarchical Identity-Based Encryption.

A hierarchical identity ~id of depth d is a tuple ~id = (id1, . . . , idd), where id i ∈
{0, 1}∗. We say that ~id of depth d is an ancestor of ~id

′
of depth d′ if ~id is a proper

prefix of ~id
′
, i.e., if d ≤ d′ and id i = id ′i, for all 1 ≤ i ≤ d. If ~id has depth 0 then

it is the empty string ε. Note that ε is a ancestor of any hierarchical identity.
A hierarchical identity-based encryption (HIBE) scheme of depth D is a tuple

of polynomial-time algorithms HIBE = (Setup,KeyDer,Enc,Dec). The first three
may be randomized but the last is not. The trusted key distribution center runs
the setup algorithm Setup on input 1k to obtain a master public and secret key pair
(mpk ,msk). As a convention, the user secret key of ~id = ε is the master secret key
msk . When a user with hierarchical identity ~id wants to generate the secret key
for a descendant ~id

′
, it runs the key derivation algorithm KeyDer on input its own

user secret key usk ~id and the identity ~id
′
. The resulting user secret key is assumed

to be securely communicated to the user in question. On input mpk , ~id,M , the
encryption algorithm Enc returns a ciphertext C of M for hierarchical identity
~id. On input usk ~id and a ciphertext C , the decryption algorithm Dec returns
a message M , or ⊥ when the ciphertext is invalid. Correctness requires that
Dec(usk ~id,Enc(mpk , ~id,M )) = M with probability one for all k ∈ N and ~id,M
whenever the keys mpk ,M , usk ~id are generated as indicated above. As a special
case, an IBE scheme is a HIBE of depth D = 1.

The common security notion of HIBE schemes is indistinguishability against
chosen-plaintext attacks [22] (ind-id-cpa). Here we only require the HIBE to be
one-way against chosen-plaintext attacks (ow-id-cpa), a slightly weaker notion
that only requires it to be hard to decrypt encryptions of random messages (as
opposed to adversarially-chosen ones).

5.2. The HIBE-2-IBS Transformation

The idea of this transformation is to use the user secret key of ~id = (id ,M ) as the
identity-based signature of M under identity id . Given the user secret key usk id

of id , the hierarchical key derivation algorithm can be used for signing. Verifica-
tion is done by checking whether the encryption of a random message under iden-
tity (id ,M ) decrypts correctly when using the signature as decryption key. More
formally, given HIBE = (Setup,KeyDer,Enc,Dec) of depth D = 2 with message
space MsgSp, we build IBS = (Setup,KeyDer,Sign,Vf) = HIBE-2-IBS(HIBE) as
given in Scheme 5.

One can prove that if HIBE is ow-id-cpa secure, then HIBE-2-IBS(HIBE) is
uf-cma secure. In contrast to the cSI-2-IBS transformation from Section 4, this
transformation does not rely on the random oracle model, so when instantiated
with a HIBE scheme that is ow-id-cpa secure in the standard model, one obtains
an IBS scheme that is uf-cma secure in the standard model as well.



Scheme 5 The scheme IBS = HIBE-2-IBS(HIBE).

Algorithm Sign(usk id ,M ):
~id← (id ,M ) ; σ

$← KeyDer(usk id , ~id)
return σ

Algorithm Vf(mpk , id ,M , σ):
~id← (id ,M ) ; M ′ $← MsgSp ; C $← Enc(mpk , ~id,M ′)
If Dec(usk ~id = σ,C ) = M ′ then d← 1 else d← 0
return d

The verification algorithm above works generically for any HIBE scheme, but
for most concrete instantiations a more efficient deterministic test exists. Also,
while the generic transformation yields uf-cma security of the IBS scheme under
the same assumption as the HIBE scheme, the IBS scheme can usually be proved
secure under a weaker assumption via a direct proof.

5.3. Instantiations

The first practical HIBE construction was the GS -HIBE due to Gentry and Sil-
verberg [22], which through the HIBE-2-IBS transformation leads to the GS -IBS
scheme that was also mentioned in [22]. Its security is based on the CDH as-
sumption in groups equipped with bilinear maps in the random oracle model. We
briefly describe the scheme here.

For simplicity we restrict our attention to symmetric pairings ê : G×G→ GT

generated by a polynomial-time pairing generator Kpair. On input 1k this algo-
rithm outputs pars = (G,GT, ê, p, g) where G,GT are descriptions of an addi-
tive group G and a multiplicative group GT of the same prime order p, P is a
generator of G, and ê is the description of a non-degenerate computable bilinear
map ê : G × G → GT. The computational Diffie-Hellman (CDH) problem in G
associated to Kpair is said to be hard if

Advcdh
Kpair,A(k) = Pr[A(pars, aP, bP ) = abP : pars $← Kpair(1k) ; a, b

$← Zp]

is negligible in k for any polynomial-time algorithm A. The assumption that CDH
is hard is a weaker assumption than the Bilinear CDH assumption used by Boneh
and Franklin [8] which states that, given (aP, bP, cP ), computing ê(P, P )abc is
hard.

The Setup and KeyDer algorithms of the GS -HIBE scheme are as follows.
The master secret key msk is a random exponent x $← Zp, the master public key
mpk contains a pairing description pars generated by Kpair(1k) and the element
X ← xP . The user secret key of an identity id1 at the first level is usk id1 ←
x ·H(id1), where H : {0, 1}∗ → G is a public hash function, modeled as a random
oracle. The user secret key of an second-level identity ~id = (id1, id2) is a pair
(R,S) where R ← rP for a random r

$← Zp and S ← usk id1 + r · H(id1, id2).
Applying the HIBE-2-IBS transform and using a more efficient verification test
yields the GS -IBS scheme given in Scheme 6.



Scheme 6 The GS -IBS scheme.

Algorithm Setup(1k):
pars $← Kpair(1k) ; x

$← Zp ; X ← xP ; mpk ← (pars, X) ; msk ← (pars, x)
return (mpk ,msk)

Algorithm KeyDer(msk , id):
(pars, x)← msk
return usk id ← x ·H(id)

Algorithm Sign(usk id ,M ):
r

$← Zp ; R← rP ; S ← usk id + r ·H(id ,M )
return σ ← (R,S)

Algorithm Vf(mpk , id ,M , σ):
Parse mpk as (pars, X) and σ as (R,S)
If ê(g, S) = ê(H(id), X) · ê(R,H(id ,M )) then d← 1 else d← 0
return d

The GS -HIBE scheme is ow-id-cpa secure in the random oracle model if the
Bilinear CDH problem in pars = (G,GT, ê, p, g) associated to Kpair is hard. With
a direct proof the GS -IBS scheme can be proved to be uf-cma secure under the
weaker CDH assumption.

Another IBS scheme BB-IBS with the same security properties can be ob-
tained by transforming the random-oracle variant of the HIBE proposed by Boneh
and Boyen [4]. Waters [33] proposed a HIBE scheme that is ow-id-cpa secure un-
der the Bilinear CDH assumption in the standard model. The HIBE-2-IBS trans-
formation yields the Waters-IBS scheme that was directly proposed in [30]. The
HIBE scheme due to Boneh, Boyen and Goh [6] can be combined with Waters’
techniques to obtain a HIBE scheme [12,27] that is ow-id-cpa secure under some
variant of the Bilinear CDH assumption in the standard model. Again, applying
the HIBE-2-IBS transform and using a more efficient verification test yields the
BBG -IBS scheme given in Scheme 7.

Here we assume that identities and messages are bit-stings from {0, 1}n. For
arbitrary identities and messages one can use a collision-resistant hash function
with image {0, 1}n, where n = 2k (due to the birthday paradox). The BBG -IBS
scheme has a particularly short signature sizes of only two elements of G, matching
the signature size of the (random-oracle) GS -IBS scheme. Using a direct proof
its euf-cma security can proved under the mCDH assumption which states that
given (ga, gb, gb2), computing gab is hard. The drawback of the BBG -IBS scheme
are its relatively large public parameters and (user) secret keys.

6. Efficiency and Security Comparison

Table 1 gives an overview of the efficiency and security properties of the IBS
schemes covered in this chapter. For each scheme it displays the transform through
which the IBS scheme was obtained (if any), the signature size, the dominating



Scheme 7 The BBG -IBS scheme.

Algorithm Setup(1k):
pars $← Kpair(1k) ; X

$← G ; Y ← ê(X,P )
U = (U0, . . . , Un) $← Gn+1 ; V = (V1, . . . , Vn) $← Gn

mpk ← (pars, Y,U,V) ; msk ← (pars, X,U,V)
return (mpk ,msk)

Algorithm KeyDer(msk , id):
Parse msk as (pars, X,U,V) ; r

$← Zp

R1 ← rP ; R2 ← X + r · (U0 +
∑n

i=1 id i · Ui)
For i = 1, . . . , n do Wi ← rVi

usk ← (pars,U,V, R1, R2,W1, . . . ,Wn)
return usk

Algorithm Sign(usk , id ,M ):
Parse usk as (pars,U,V, R1, R2,W1, . . . ,Wn)
s

$← Zp ; S1 ← R1+sP ; S2 ← R2+s·(U0+
∑n

i=1 id i ·Ui)+
∑n

i=1 Mi ·(Wi+sVi)
return σ ← (S1, S2) ∈ G2

Algorithm Vf(mpk , id ,M , σ):
Parse mpk as (pars, Y,U,V) and σ as (S1, S2)
If ê(S2, P ) = Y · ê(S1 , U0 +

∑n
i=1 id i · Ui + Mi · Vi) then d← 1 else d← 0

return d

computational overhead of signing and verification, the security assumption under
which the IBS scheme has been proved secure, and whether this proof is in the
random-oracle model (ROM) or the standard model (SM).

For the certificate-based scheme Cert -IBS all properties are denoted in terms
of the underlying standard signature scheme. The numbers for the RSA- and
factoring-based schemes Sh-IBS , GQ -IBS , and ItR -IBS are stated in terms
of elements (el.), multiplications (mult.), exponentiations (exp.), and multi-
exponentiations (mexp.) in the group Z∗N where N is the product of two
large primes. For the pairing-based schemes ChCh-IBS , GS -IBS , Waters-IBS ,
BBG -IBS , and BBMQ -IBS , we consider symmetric pairings ê : G × G → GT

over groups of prime order p. Signature sizes and computational overhead are
given in terms of elements (el.) of G or Zp; exponentiations (exp.) in G or GT;
and pairing evaluations (pairings). (Note that we follow the popular convention
to refer to multiplication in the additive group G as exponentiations.) Computing
a sum U0 +

∑n
i=1 id i ·Ui takes n+ 1 multiplications (i.e., additions in the group)

in G, which for n = 2k = log2 |G| takes about half the time of an exponenti-
ation in G using the “square-and-multiply” method. For the discrete-logarithm
based BNN -IBS scheme, we consider multiplicative groups G of prime order p.
Values are in terms of elements (el.) of G and Zp, exponentiations (exp.) and
multi-exponentiations (mexp.) in G.
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Table 1. Efficiency and security comparison of all treated IBS schemes.



7. Extensions

7.1. Hierarchical Identity-Based Signatures

Similar to the concept of hierarchical identity-based encryption (HIBE) one can
also consider the concept of hierarchical identity-based signatures (HIBS) [22].
Here hierarchical identities are tuples of identities ~id = (id1, . . . , idd), and user
secret keys for hierarchical identity ~id

′
can be derived by the owner of the user

secret key from some ancestor ~id of ~id
′
. In analogy with the certification approach

for IBS schemes, Kiltz et al. [26] showed how to construct HIBS schemes from SS
schemes using certificate chains. Also, analogously to the HIBE-2-IBS transform,
more efficient d-level HIBS schemes can be constructed from (d + 1)-level HIBE
schemes.

7.2. Identity-Based Signatures with Special Properties

In order to satisfy the needs of some specific scenarios such as electronic commerce,
cash, voting, or auctions, the original concept of a digital signature has been
extended and modified in multiple ways, giving rise to many kinds of digital
signatures with “special properties”, including blind signatures [13], threshold
signatures [16], and aggregated signatures [9]. Originally, these extensions were
introduced for the (certificate-based) public-key setting, but nothing prohibits
extending them to the identity-based setting.

7.2.1. The Certification Approach

The easiest way to construct IBS schemes with special properties is to again follow
the certification approach from Section 3. A signature then consists of two parts: a
standard signature with special properties on the message using a standard secret
key, and a certificate that links the corresponding public key to the identity of
the user. The latter can be implemented using a standard signature scheme. As
shown by Galindo et al. [20], this construction works for many types of identity-
based signatures with special properties such as proxy signatures, blind signatures,
verifiably encrypted signatures, undeniable signatures, forward-secure signatures,
strong key insulated signatures, online/offline signatures, threshold signatures,
and aggregate signatures. However, the same approach does not seem to work in
settings when additional public keys have to be used in the protocol, different from
that of the signer. This includes ring, designated verifier, confirmer, nominative,
and chameleon signatures. For these kinds of signatures, therefore, it makes more
sense to consider specific constructions in the identity-based framework.

7.2.2. Verifiably Encrypted Signatures

As an example of IBS schemes with special properties, let us consider ID-based
verifiably encrypted signatures. Verifiably encrypted signature (VES) schemes can
be seen as a special extension of the standard signature primitive. VES schemes
enable the signer to create a signature that is encrypted using an adjudicator’s
public key (the VES signature), but in such a way that public verification of the



signature remains possible. The adjudicator is a trusted third party, who can re-
veal the plaintext signature when needed. VES schemes provide an efficient way
to enable fairness in many practical applications such as contract signing. Com-
pared to a standard signature a VES scheme has three additional algorithms:
VES signing/verification (with respect to an adjudicator’s public key), and adju-
dication. Here the adjudication algorithm inputs an adjudicator’s secret key and
transforms a VES into a standard signature.

Identity-based verifiably encrypted signature (IB-VES) schemes were intro-
duced in [24] where also a concrete instantiation based on bilinear maps was pro-
posed. For the generic certificate-based construction, VES signing and verifica-
tion can be lifted to the identity-based case using certificates following the tech-
niques from Section 3. IB-VES signing replaces σ with its VES counterpart by
running the VES signing algorithm on sk , M , and the adjudicator’s public key.
IB-VES verification checks the certificate and the VES using the standard VES
verification algorithm.

An efficient VES scheme in the random oracle model based on pairings was
given in [9], one in the standard model in [28]. It was further noted in [28] that
VES schemes can be constructed on general assumptions such as trapdoor one-
way permutations. Therefore the generic construction yields an IB-VES scheme
based on any trapdoor one-way function [28], and a more efficient one using [9].
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