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Abstract

In this paper, we show that mobile code technology may prove to be
a useful tool in advanced cryptographic protocols for secure distributed
computing.

Secure distributed computing addresses the problem of performing
a computation with a number of mutually distrustful participants, in
such a way that each of the participants has only limited access to
the information needed for doing the computation. In the presence
of a third party completely trusted by all participants, the problem is
trivially solvable. However, this assumption is in many applications
non-realistic. Over the past two decades, a number of solutions requir-
ing no trusted third party have been developed using cryptographic
techniques. The disadvantage of these cryptographic solutions is the
excessive communication overhead they incur.

We will show in this paper how the use of mobile agents employ-
ing these cryptographic techniques can provide for a trade-off between
communication overhead and trust. The communication overhead
problem would be solved if the communicating parties were brought
close enough together. Our solution is to use mobile agents to execute
the cryptographic protocols. Of course, a mobile agent needs to trust
his execution platform, but we show that the level of trust needed in
this case is much less than the level of trust needed for a classical
trusted third party.
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1 Introduction

Secure distributed computing (SDC) addresses the problem of distrib-
uted computing where some of the algorithms and data that are used in
the computation must remain private. Usually, the problem is stated
as follows, emphasizing privacy of data. Let f be a publicly known
function taking n inputs, and suppose there are n parties (named
pi,t = 1...n), each holding one private input z;. The n parties want
to compute the value f(z1,...,z,) without leaking any information
about their private inputs (except of course the information about z;
that is implicitly present in the function result) to the other parties.
An example is voting: the function f is addition, and the private in-
puts represent yes (z; = 1) or no (z; = 0) votes. In case you want
to keep an algorithm private, instead of just data, you can make f an
interpreter for some (simple) programming language, and you let one
of the z; be an encoding of a program.

In descriptions of cryptographic solutions to the secure distributed
computing problem, the function f is usually encoded as a boolean cir-
cuit, and therefore secure distributed computing is also often referred
to as secure circuit evaluation.

It is easy to see that an efficient solution to the secure distributed
computing problem would be an enabling technology for a large num-
ber of interesting distributed applications across the Internet. Some
example applications are: auctions ([12]), charging for the use of al-
gorithms on the basis of a usage count ([13, 14]), various kinds of
weighted voting, protecting mobile code integrity and privacy ([14,
10]), etc. ..

Secure distributed computing is trivial in the presence of a globally
trusted third party(TTP): all participants send their data and code to
the TTP (over a secure channel), the TTP performs the computation
and broadcasts the results. The main drawback of this approach is the
large amount of trust needed in the TTP.

However, solutions without a TTP are also possible. Over the past
two decades, a fairly large variety of cryptographic solutions has been
proposed. An overview is given by Franklin [6], and more recently by
Cramer [4]. These solutions differ from each other in the cryptographic
primitives that are used, and in the class of computations that can
be performed (some of the solutions only allow for specific kinds of
functions to be computed). The main drawback of these solutions
is the heavy communication overhead that they incur. For a case-
study investigating the communication overhead in a concrete example
application, we refer the reader to [11].

Mobile agents employing these cryptographic techniques can provide
for a trade-off between communication overhead and trust. The com-
munication overhead problem would be solved if the communicating



parties were brought close enough together. Our solution is to use
mobile agents to execute the cryptographic protocols. Of course, a
mobile agent needs to trust his execution platform, but we show that
the level of trust needed in this case is much less than the level of trust
needed with a classical TTP. In contrast with protocols that use un-
conditionally TTPs, the trusted site is not involved directly. It simply
offers a secure execution platform, i.e. it executes the mobile code cor-
rectly, does not spy on it and does not leak information to other mobile
agents. Moreover, the trusted host does not have to know the protocol
used between the agents. In other words, the combination of mobile
agent technology and secure distributed computing protocols makes
it possible to use a generic TTP that, by offering a secure execution
platform, can act as TTP for a wide variety of protocols in a uniform
way. A detailed discussion of the use of mobile code technology for
advanced cryptographic protocols is given in section 3.

The combination of cryptographic techniques for secure computing
and mobile code has been investigated from another point of view by
Sander and Tschudin ([13, 14]). In their paper on mobile cryptography,
they deal with the protection of mobile agents from possibly malicious
hosts. Hence, the focus in their work is on the use of cryptographic
techniques for securing mobile code. The security concerns posed by
the mobile agent protection problem are code privacy (Can a mobile
agent conceal the program it wants to have executed?), code and ex-
ecution integrity (Can a mobile agent protect itself against tampering
by a malicious host?) and computing with secrets in public (Can a
mobile agent remotely sign a document without disclosing the user’s
private key?). To address some of these concerns, cryptographic secure
computation techniques can be used. We discuss this in more detail in
section 2.3, which is part of our survey on secure distributed computing
protocols.

The structure of this paper is as follows. First, we present a short
survey on cryptographic protocols for the SDC problem, since these
protocols are not widely known in the distributed systems community.
Moreover, the survey gives an indication of the amount of commu-
nication these protocols require. Then, we discuss how code mobility
can offer a middleground between a TTP-based solution and a purely
cryptographic solution. Finally, we conclude by summarizing the ad-
vantages of this middleground solution.

2 Survey of SDC protocols

Various kinds of solutions for the secure distributed computing prob-
lem have been proposed in the literature (often using different termin-
ology than the one used in this paper). Since these solutions are not



well-known in the distributed systems community, we present a short
survey.

2.1 Using probabilistic encryption

One class of techniques for SDC is based on homomorphic probabil-
istic encryption. An encryption technique is probabilistic if the same
cleartext can encrypt to many different ciphertexts. To work with en-
crypted bits, probabilistic encryption is essential, otherwise only two
ciphertexts (the encryption of a zero and the encryption of a one)
would be possible, and cryptanalysis would be fairly simple. An en-
cryption technique is homomorphic if it satisfies equations of the form
E(x op y)=E(z) op' E(y) for some operations op and op’. A
homomorphic encryption scheme allows operations to be performed on
encrypted data, and hence can be used for secure circuit evaluation.
Abadi and Feigenbaum present a protocol for two-player secure cir-
cuit evaluation using a homomorphic probabilistic encryption scheme
based on the Quadratic Residuosity Assumption (QRA) in [1]. This
protocol allows A who has a secret function (i.e. circuit) f and B who
has secret data z to calculate f(z) without revealing their secrets.
Let k be the product of two primes p and ¢, each congruent to
3 mod 4. An integer a € Z;[+1] — the integers relatively prime to k
with Jacobi symbol 1 — is a quadratic residue mod k if there exists an
z € Z;[+1] such that a = z? mod k. The QRA states that determining
if an integer a is a quadratic residue mod k is a hard problem if the
factorization of k is unknown but is easy to solve if p and ¢ are given.
If we encrypt a zero by a quadratic residue and a one by a quadratic
nonresidue mod k, we can define the encryption of a bit b as

E,(b) = (-1)° -2 mod k

with 7 €r Z¢[+1] chosen at random. This probabilistic encryption
scheme has two homomorphic properties that will come in handy in
the protocol:

Ey(b) = (=1) - Ex(b) mod k
Ek(bl &® bz) = Ek(bl) . Ek(bz) mod k

B starts the protocol by choosing p and q and multiplying them to
produce k. B sends k and the encryption of his data bits Ex(z1), ..., Ex(zn)
to A. B keeps the factorization of k secret. A then starts evaluating
her secret circuit. If she has to evaluate a NOT gate with input Ej (b),
she simply calculates —Ey(b) mod k. An XOR with inputs Ey(b;) and
Ej(b2) is also easy to evaluate: A just takes Ej(by) - Ex(bs) mod k as
the output of the gate. To evaluate the AND of inputs Ej(b;) and
Ej(b2), she needs B’s help. A chooses two bits ¢; and ¢y at random
and sends Ej(b; @ ¢1) and Eg(by @ ¢3) to B. B decrypts the bits A



just sent him as d; and dy (he can do so because he knows p and q)
and sends the tuple

< Ek(dl A dz),Ek(dl /\d_g),Ek(d_l/\ dg),Ek(d_ll\d_z) >

to A. A takes the first element of this tuple as the output of the AND
gate if she chose ¢; = ¢ = 0, the second if she chose ¢; = 0 and ¢; =1,
the third if she chose ¢; = 1 and ¢y = 0 and the last one if she chose
c1 = c3 = 1. Proceeding this way from gate to gate, A ends with the
encrypted result Er(f(z)) and sends it for decryption to B.

Note the large amount of communication in the protocol: for each
AND gate to be evaluated, a large amount of communication is neces-
sary. Concrete estimates of the communication overhead in a realistic
example can be found in [11].

2.2 Protocols based on oblivious transfer

In [8], Goldreich, Micali and Wigderson present a two-party protocol
for the problem of combined oblivious transfer which is equivalent to
the problem of secure circuit evaluation. The setting is slightly different
than in the previous protocol. Here, two parties A and B want to
evaluate a publicly known boolean circuit. This circuit takes input
from both A and B, but each party wants to keep his part of the data
private. In contrast, in the previous protocol, the circuit was private
to A, and the data was private to B. Recall from the introduction that
these two settings are essentially equivalent: by making the publicly
known circuit a universal circuit, it is still possible to hide functions
instead of data.

The basic idea of the protocol we are about to describe is the fol-
lowing: A will evaluate the circuit, not on the actual bits, but on
encodings of those bits. The encoding of the bits is known only to
B. So A evaluates the circuit, but can not make sense of intermediary
results because she doesn’t know the encoding. B knows the encoding
but never gets to see the intermediary results. When the final result
is announced by A (in encoded form), B will announce a decoding for
this final result.

We give a more detailed description of the protocol. B assigns
two random bit strings 70 and 7} to every wire i in the circuit, which
represent an encoded 0 and 1 on that wire. This defines a mapping
¢i : 78— b for every wire i. B also chooses a random bit string R that
will allow A to check if a decryption key is correct. The general idea
of the protocol is that, if b is the bit on wire ¢ in the evaluation of the
circuit for A’s and B’s secret inputs, A will only find out about r® and

will never get any information about ¢;(r?) or Tf_ . In other words, A
evaluates the circuit with encoded data.



We use the notation E(M,r) for a symmetric encryption function
of the message M with secret key r. To encrypt a NOT-gate with
input wire ¢ and output wire o, B constructs a random permutation of
the tuple

<ER-rLr),E(R-72,7}) >

(o 07" 1

where - denotes the concatenation of bit strings. To encrypt an AND-
gate with input wires [ and r and output wire o, B constructs a random
permutation of the tuple

< E(R'TS,T?@T?),E(R'TE:,T?@’I‘%),
E(R'rgarll@T2)7E(R'Ti7rll@r7l~) >

with @ the bit-wise XOR. Any other binary port can be encrypted in
an analogous way.

B sends the encryption of every gate in the circuit together with R,
the encoding of his own input bits and the mapping ¢,, of the output
wire m to A. To perform the evaluation of the circuit on encoded data,
A first needs encodings of all the input bits. For B’s input bits, the
encoding was sent to her, but since B doesn’t know A’s inputs, B can’t
send an encoding of them. Note that B can’t send the encoding of both
a1 and a 0 on A’s input wires either, because that would allow A to
find out more than just the result of the circuit. The technique that
is used to get the encoding of A’s input to A is called one-out-of-two
oblivious transfer ([5]). This is a protocol that allows A to retrieve one
of two data items from B in such a way that (1) A gets exactly the
one of two items she chose and (2) B doesn’t know which item A has
got.

Thus, A and B execute a one-out-of-two oblivious bit string transfer
(often referred to as (f)—OT’“) for each of A’s input bits. This guaran-
tees that A only obtains the encoding of her own input bits without
releasing any information about her bits to B. A evaluates each gate
by trying to decrypt every element of the tuple using the encoding of
the bit on the input wire (or the XOR of two input bit encodings) as
a key; she will only decrypt one of the elements successfully, thereby
obtaining the encoded bit on the output wire. Note that she can verify
if a decryption was correct by comparing the first bits of the decryp-
ted string with R. Proceeding this way through the entire circuit, A
obtains the encoding of the final output and applies ¢,, to reveal the
plain output bit.

Another protocol for 2-party secure computation based on oblivious
transfer is presented in [9]. The basic idea in this protocol is to have
the participants compute the circuit on data that is shared by the two
parties using a technique known as secret sharing.



2.3 Autonomous protocols

The protocols discussed in the two previous subsections require more
communication rounds than strictly necessary. The probabilistic en-
cryption based protocol requires one communication round per AND-
gate in the circuit. The oblivious transfer based protocol requires one
communication round for performing the oblivious transfer of the in-
put, and another for sending the encrypted circuit.

For protecting mobile code privacy and integrity, non-interactive
(or autonomous) protocols are necessary ([14]). The idea here is to real-
ize a system where a host can execute an encrypted function without
having to decrypt it. Thus, functions would be encrypted such that
the resulting transformation can be implemented as a mobile program
that will be executed on a remote host. The executing computer will
be able to execute the program’s instructions but will not be able to
understand the function that the program implements. Having func-
tion and execution privacy immediately yields execution integrity: an
adversary can not modify a program in a goal-oriented way. Modi-
fying single bits of the encrypted program would disturb its correct
execution, but it is very hard to produce a desired outcome.

It turns out to be possible to construct such autonomous solutions
where the client sends (in one message) an encrypted function f, and
it receives from the server an encrypted result f(z) in such a way that
f remains private to the client and z remains private to the server.

Various autonomous protocols have been proposed in the literature.

Sander and Tschudin ([13, 14]) introduce a technique that allows
for a fairly efficient evaluation of polynomials in a ring of integers
modulo n using a homomorphic encryption scheme. They also show
how an autonomous protocol could be realized using compositions of
rational functions.

Sander and Tschudin emphasize in their paper that securing single
functions is not sufficient. They consider the example of implementing
a digital signing primitive for mobile agents. Even if the real signa-
ture routine can be kept secret, the whole (encrypted but operational)
routine might be abused to sign arbitrary documents. Thus, it is ne-
cessary to guarantee that cryptographic primitives are unremovably
attached to the data to which they are supposed to be applied (the
linking problem). The general idea behind the solution here is to com-
pose the signature generating function s with the function f of which
the output is to be signed. Crucial for the security of this scheme is
the difficulty of an adversary to decompose the final function into its
elements s and f. An outline of how this could be implemented using
rational functions is given in [14].

Loureiro and Molva ([10]) use a public key encryption system based
on Goppa codes that allows for the non-interactive evaluation of func-



tions describable by a matrix multiplication. Loureiro and Molva also
show how any boolean circuit evaluation can be done by a matrix mul-
tiplication. However, the representation of a boolean circuit requires
a huge matrix (for a circuit with ! inputs, one of the dimensions of
the matrix is 2!). It remains an open problem whether more efficient
representations of boolean circuits as matrices can be achieved.

Finally, in a very recent paper ([15]), Sander, Young and Yung pro-
pose an autonomous protocol based on a new homomorphic encryption
scheme.

2.4 Multiparty protocols

All the previous protocols concentrate on the two-party case: only
two parties are involved in the secure computation process. It is clear
that the multi-party case is even more interesting from an application-
oriented point of view. The multi-party case has also received consid-
erable interest in the literature.

Chaum, Damgard and van de Graaf present a multiparty protocol
in [2] that starts with the truth table of every gate in the circuit.
Each player in turn receives a “scrambled” version of the truth tables
from the previous player, transforms the truth tables by adding his
own encryptions and permutations, commits to his encryptions and
sends these transformed truth tables on to the next player. When
the last player has finished his transformation, all players evaluate
the scrambled circuit by selecting the appropriate row from the truth
tables.

Franklin and Haber present an elegant multiparty protocol based on
group-oriented cryptography in [7]. All parties send each other an El-
Gamal alike joint encryption of their input bits and evaluate the entire
circuit together. The evaluation of a NOT-gate can be done without
interaction while the evaluation of an AND-gate requires broadcasting
encrypted bits and “decryption witnesses”. Finally, each party sends
a decryption witness for the output bit.

Even information-theoretically secure multiparty computation can
be achieved (as opposed to only computationally secure). A possible
realisation is discussed in [4].

The communication overhead for multiparty protocols is even more
serious than that for the 2-party protocols.

3 Trust versus Communication Overhead

In this section, the different options for implementing secure distrib-
uted computation are discussed. It will be shown that there is a trade-
off between trust and communication overhead in secure computations.



If all participants are distrustful of each other, the secure computa-
tion can be performed using protocols surveyed in the previous section
with a prohibitive huge amount of communication. However, if a trus-
ted third party is involved, the communication overhead can be made
minimal.

Recall from section 1 that f is a publicly known function taking
n inputs. Assume that there are n distrustful participants py, ..., pn,
each holding one private input z;. The n participants want to compute
the value of f(z1,...,z,) without leaking information of their private
inputs to the other participants.

3.1 A Trusted Third Party

The first, perhaps most straightforward option, is to use a trusted third
party (TTP). Every p; sends its private input z; to the TTP who will
compute f(zi,...,2,) and disseminate the result to the participants
pist = 1l.n.

It is clear that this approach has a very low communication over-
head: the data is only sent once to the TTP; later, every participant
receives the result of the computation. However, every participant
should uncondionally trust the TTP. What does that trust involve?
First of all, every p; trusts:

e that the TTP will correctly compute f(z1,...,25);

e that the TTP will not conspire with one of the other parties and
leak private inputs z;.

In other words, every partner trusts the code of the TTP. Although
not trivial, this could be accomplished through code-inspection, and
the use of a trusted (chain of) compiler(s).

However, this is not sufficient: the execution platform on which the
TTP is executing, should also be considered. Hence, every participant
p; needs to be convinced that:

e the TTP is present on that execution platform;
e the execution platform excecutes the code of the TTP correctly;

e the execution platform does not spy on the processes, (e.g. it
does not copy the private data z; of the TTP for direct or later
misuse);

e the execution platform destroys the TTP after execution (there
are no traces of the data on the TTP left).

It is not clear whether n distrustful participants will easily agree on a
trustworthy execution site, and what procedures should be used.
Finally, before sending its private data to the TTP, every p; must
first authenticate the TTP, and then send z; through a safe channel.
This can be accomplished via conventional cryptographic techniques.



To sum up, this approach has a very low communication overhead,
but requires extensive trust relations.

3.2 Cryptographic Secure Distributed Computing

The second option is the use of cryptographic techniques that make
the use of a trusted third party superfluous.

The trust requirements are really minimal: every participant p;
trusts its own execution site, and expects that the other participants
provide correct values for their own inputs.

Although this option is very attractive, it should be clear from the
previous sections and from [11] that the communication overhead is far
too high to be practically useful in a general networked environment.

3.3 A Virtual Trusted Third Party

The last option tries to combine the two previous options: the com-
munication overhead of SDC-techniques are remedied by introducing
semi-trusted execution sites.

In this approach, every participant p; sends its representative, agent
a;, to a trusted execution site (E;). The agent contains a copy of the
private data z; and is capable of running a SDC-protocol.

It is allowed that different participants send their agents to different
sites, the only restriction being that the sites should be located closely
to each other.

The amount of large distance communication is moderate: every
participant sends its agent to a remote site, and receives the result
from its agent. The agents use a SDC-protocol, which unfortunately
involves a high communication overhead. However, since the agents
are executing on sites that are near each other, the overhead of the
SDC-protocol is acceptable.

Let us examine the trust requirements for this approach.

Every p; sends his own a; to a remote execution site F;. Hence,
p; can trust its agent. Furthermore, p; needs to be convinced that the
excecution base F; on which its agent a; runs, is trustworthy:

e FE; correctly executes the code of a;;
e E; does not spy on a;;
e F; destroys all traces of a; after its execution.

These are the same requirements as those for the trusted site of the
first option. The difference, however, is that not all the participants
have to endorse the same site. Moreover, in contrast with protocols
that use unconditionally trusted third parties, the trusted site is not
involved directly. It simply offers a secure execution platform for the
mobile agents: the trusted host does mnot have to know the protocol
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used between the agents. In other words, the combination of mobile
agent technology and secure distributed computing protocols makes it
possible to use a generic trusted third party that, by offering a secure
execution platform, can act as trusted third party for a wide variety
of protocols in a uniform way.

Finally, every execution site needs a mechanism to safely download
an agent. However, that can be easily accomplished through convential
cryptographic techniques.

Note that a p; does not need to trust the other execution sites. The
agents that participate in the secure computation are protected against
malicious behaviour of the other execution sites by the SDC-protocols.
That is sufficient to make this approach work.

4 Conclusion

We briefly summarize the advantages of the combination of mobile
code and cryptographic SDC-techniques.

e It is not necessary to find one site trusted by all participants.
Every participant only trusts the execution site of his agent.

e There is no need for computation specific code that has to be
endorsed by all participants. The trusted execution sites are gen-
eric, and can be reused for a wide variety of applications.

e Since the execution sites are located closely to each other, the
communication overhead of SDC-protocols are no longer prohib-
itive for their use.
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