Enabling Privacy-Preserving Credential-Based
Access Control with XACML and SAML

Claudio A. Ardagna*, Sabrina De Capitani di Vimercati*, Gregory NevenT, Stefano Paraboschii,
Franz-Stefan PreissT, Pierangela Samarati*, and Mario Verdicchiot
*Universita degli Studi di Milano, Italy
YIBM Research - Ziirich, Switzerland
YUniversita degli Studi di Bergamo, Italy

Abstract—In this paper we describe extensions to the access
control industry standards XACML and SAML to enable
privacy-preserving and credential-based access control. Rather
than assuming that an enforcement point knows all the re-
quester’s attributes, our extensions allow the requester to learn
which attributes have to be revealed and which conditions must
be satisfied, thereby enabling to leverage the advantages of
privacy-preserving technologies such as anonymous credentials.
Moreover, our extensions follow a credential-based approach,
i.e., attributes are regarded as being bundled together in
credentials, and the policy can refer to attributes within specific
credentials. In addition to defining language extensions, we also
show how the XACML architecture and model of evaluating
policies can be adapted to the credential-based setting, and we
discuss the problems that such extensions entail.

Keywords-Access control, privacy, anonymous credentials,
XACML.

I. INTRODUCTION

An appropriate access protection of valuable online ser-
vices and resources is fundamental to support the ongoing
digitalization of businesses, institutions, and governments. In
particular, enterprises are moving away from an assumption
of an a priori knowledge of all authorized users. Rather, they
are increasingly opening up their services to — possibly new
and unknown — users in possession of credentials issued by
trusted third-party identity providers.

In such a scenario, classic access control approaches are
not adequate, and alternative approaches such as attribute-
based access control (ABAC) [1] are more and more de-
ployed, allowing for the expression of access control re-
strictions in terms of conditions over the attributes of the
requester and of the protected resource. Moreover, standards
such as the eXtensible Access Control Markup Language
(XACML) and the Security Assertion Markup Language
(SAML) were proposed to specify ABAC policies and to
exchange authenticated attribute values, respectively.

A number of recent works [2], [3], [4], [S] have pro-
posed a shift from ABAC to credential-based access control
(CBAC, also called “card-based access control”), in which
the attributes, which are collectively attached by a requester
in ABAC, are instead grouped in credentials (or “cards”)
owned by such requester. The issuer of a credential vouches

for the correctness of the attribute values with respect to the
credential owner.

Not only does this abstract view on credentials intuitively
mirror the real-world authentication cards found in every
citizen’s wallet today, but it also acts as an excellent
model to unify authentication technologies as diverse as
SAML, OpenlD, X.509 certificates, trusted LDAP servers,
and anonymous credentials [6], [7], [8]. In particular, we see
anonymous credentials as particularly interesting, because of
the strong privacy advantages they offer. More specifically,
they enable the requester to selectively reveal subsets of
attributes from a credential, and even to merely prove that
the attributes contained in a credential satisfy a certain
condition without revealing the exact attribute values, and
all of this while preserving unlinkability between different
uses of the same credential.

The goal of this work is to bring privacy-preserving
credential-based access control to the real world by lever-
aging the status of XACML as de facto standard in access
control languages. To do so, however, a number of issues
need to be addressed. First, XACML does not manage
attributes bundled in credentials, and, thus, does not allow
to distinguish whether two attributes are contained in the
same credential or in different ones. This feature is needed to
avoid abuses like, for instance, the possibility for the owner
of two university diploma credentials to use the course of
study of one diploma and the grades of the other. Also, the
type of the containing credential may be important, e.g.,
to distinguish the name as it appears on a passport and on
a driver’s license, even if both are issued by the state. To
achieve such a result, it is fundamental to have a description
of credentials and their attributes and that such description
is shared among all the actors involved in the system, i.e.,
there is a need for an ontology of credential types.

Second, XACML prescribes that the requester communi-
cates all of her attributes to the server for the evaluation
of the access control policy, which is problematic from
a privacy perspective. Some technologies such as SAML,
OpenlD, and anonymous credentials, offer the possibility to
reveal only a subset of the attributes contained in a creden-
tial. Such features can be exploited by first communicating

the policy to the requester, so that she can disclose only the
information necessary for the access.

Third, XACML and SAML merely allow requesters to
reveal concrete attribute values, rather than allowing them to
prove that certain conditions over the attributes hold. This
further privacy-preserving feature can be obtained by lever-
aging the cryptographic power of anonymous credentials.

This work tackles above issues and is organized as
follows: Sections II and III provide an overview of the
literature and the scenario we refer to, respectively; Sec-
tion IV presents the basics of XACML, which are then
extended in Section V to deal with credentials; Section VI
illustrates how we leverage existing Semantic Web standards
to organize credentials and their attributes into hierarchies;
Section VII provides the details of the extension of SAML
to enable users to prove conditions over their attributes,
and Section VIII shows the necessary modifications of
the current XACML architecture to support the proposed
extensions; finally, Section IX summarizes our efforts and
discusses our future work.

II. RELATED WORK

The problem of performing access control without prior
knowledge of the access-requesters is typically overcome
by basing the access control decisions on, possibly certified,
properties the requester has. Most of the proposed solutions,
e.g., [1], [9], [10], are based on different forms of logic. Al-
though such approaches are highly expressive and powerful,
they are difficult to apply in practice where simplicity and
easy of use are required. In addition, all such proposals lack
support for anonymous credentials.

The eXtensible Access Control Markup Language
(XACML) [11] is the de facto standard for expressing access
control policies and permits to express access control rules
on the basis of a requester’s properties. Although XACML
enjoys large adoption in industry due to its simplicity and
its powerful extension mechanism, it has several limitations.
In particular, there is no support for certified credentials nor
does it allow for dealing with unknown requesters. Rather,
it is assumed that requesters provide all their properties
together with the access request. However, this poses sig-
nificant privacy risks for the requesters.

Some recent proposals have investigated credential-based
access control with anonymous credentials. Ardagna et
al. [3] introduce a language that is explicitly targeted to
anonymous credentials. However, unlike the solution pre-
sented in this paper, their proposal does not extend to other
technologies. Camenisch et al. [5] propose a language for
technology-independent credential-based access control, but
the language follows a proprietary syntax, which makes
deployment in real-world access control scenarios hard. The
recent work by Ardagna et al. [4] defines credential-based
access control extensions for XACML, but cannot express

the advanced functionalities of anonymous credentials. Nei-
ther of the above languages specifies wire formats necessary
for the server to communicate the applicable access control
requirements to the requester, and for the requester to send a
description of her claimed credential properties back to the
server. In this work we solve this issue by extending SAML
with the necessary expressivity.

III. SCENARIO

The setting that we envisage is the following. The re-
quester owns a set of credentials obtained from various
issuers, possibly implemented in different credential tech-
nologies. A credential is a list of attribute-value pairs with
technology-specific information, called pre-evidence, that
the requester will need to substantiate the claims that she
will make about the credential. A credential is always of a
certain type that defines which attributes are contained in the
credential. We assume that every credential has the dedicated
attributes type and issuer.

Servers host resources and protect them with policies
expressed in an extended version of XACML. Users request-
ing access to a resource receive the relevant policy, which
describes the requirements on the requester’s credentials in
order to be granted access. The policy may include require-
ments on multiple credentials at the same time, meaning that
multiple credentials have to be presented in order to obtain
access, and may include provisional actions, i.e., actions that
the requester needs to fulfill prior to being granted access.

Subsequently, the requester inspects the policy and, if she
has the necessary credentials to satisfy it, she creates a claim
over a suitable subset of her credentials, which can describe
(1) values of attributes contained in these credentials, (2)
conditions over non-disclosed attributes, and (3) the fulfilled
provisional actions. From the pre-evidence contained in the
credentials, the requester derives (technology-specific) evi-
dence for the claim to convince the server of its correctness,
of the integrity of the attribute values, of her ownership of
the credentials, and, possibly, of the freshness of the claim.

Afterwards, the requester makes a new request for the
resource, but this time she includes the created claim and
evidence. The server verifies the validity of the evidence
w.r.t. the claim and evaluates whether the policy is fulfilled
by the claim. Acces is granted or denied accordingly.

Note that there is a clear distinction between a credential
and a claim: while the former is a typically long-lived
bundle of attributes, the latter is a short-lived description of
properties that these attributes enjoy. The requester keeps her
credentials and the associated pre-evidence until they expire
or are revoked; a claim and the corresponding evidence are
usually only relevant within a single session with a server.

IV. BAsics oF XACML

XACML defines an XML-based access control policy
language as well as a processing model for evaluating the

Req | Req+Claim PEP
Policy | Resource | iEvidence Verifier;

i | iPolicy Collector f-Fies---4 pAP

Access Requester

! Context Handler PDP
:----'E Claim Handler

Rule Verifier

Figure 1. XACML architecture with extensions. Standard XACML
components are depicted with solid lines. Extensions are depicted with
dotted lines.

policies on the basis of a given XACML access request.
Such request specifies by means of attributes which subject
(i.e., who) wants to perform which action (i.e., do what) on
which resource (i.e., on what).

An XACML policy has a PolicySet root element that fur-
ther contains Policy or PolicySet elements. A Policy contains
a set of Rules that define positive or negative authoriza-
tions (Permit or Deny rules). The Rule, Policy and PolicySet
elements may contain a Target that determines their applica-
bility, i.e., to which access requests the respective elements
and their children apply. The Target is expressed in terms
of simple combinations of attributes describing applicable
subjects, actions and resources. The applicability of a Rule
is further determined by a boolean Condition that allows for
more complex restrictions by means of functions over such
attributes. Functions are stated by means of Apply elements
that specify a respective FunctionID XML-attribute (e.g.,
’string-equal’) and that contain child elements representing
the appropriate function parameters. Such parameters may
be: (1) AttributeDesignator elements referring to attributes
given in the request, (2) concrete attribute values, or (3) fur-
ther Apply elements. Each PolicySet and Policy element also
specifies a combining algorithm defining how to combine
the different outcomes of the contained child elements (i.e.,
PolicylPolicySet and Rule elements, respectively) when a
request is evaluated w.r.t. an XACML policy.

An XACML system consists at least of a policy enforce-
ment point (PEP), a policy decision point (PDP), a policy
administration point (PAP) and a context handler (cf. Fig-
ure 1). Access requesters issue their requests to the PEP
who is responsible for enforcing the access control decisions
that are rendered by the PDP on the basis of the request.
The PDP makes decisions w.r.t. policies that are created
and maintained by the PAP. The context handler is an
intermediate component between the PEP and the PDP that
buffers the attributes that were given to the PEP in the
request and provides them to the PDP on demand.

V. CREDENTIAL-BASED XACML

In the following we use the namespace prefix xacml to
refer to the XACML 3.0 [11] namespace. Our extensions

are defined in namespace http://www.primelife.eu,
denoted by prefix pl or without prefix.

The language extensions that we propose to XACML
go beyond the standard extension points. All proposed
extensions are in line with the semantics of existing XACML
language constructs though, i.e., we do not alter the se-
mantics of existing elements or attributes. To facilitate the
adoption of our approach in existing XACML code bases, we
designed our extensions for minimal impact on the language
and the XACML evaluation mechanism.

XACML rules that contain credential requirements can
only have effect Permit. Rules with effect Deny are point-
less as they essentially require that the requester does not
have a certain credential. Assuming that the requester’s goal
is to obtain access, she can always pretend not to have the
specified credentials.

Our extensions enable policy authors to express condi-
tions on the credentials that a requester must own and
the actions that she must perform to be granted ac-
cess. To this end we augment the <xacml:Rule> el-
ement with optional <CredentialRequirements> and
<ProvisionalActions> child elements. The former de-
scribes the credentials that the requester needs to own and
the conditions these credentials have to satisfy. The latter
describes the actions that she has to perform. We now discuss
both elements in more detail.

A. Credential Requirements

To express credential-based access control policies, the
language needs a way to refer to the credentials that bundle
several attributes together. For example, it must be possible
to refer to the requester’s name as it appears on her passport,
not on her credit card. Cross-credential conditions are an-
other important use case: for example, the policy language
must allow to express that the names on a credit card and
on a passport must match, or that the expiration date of an
entry visa is before the expiration date of a passport.

To this end, <CredentialRequirements> contains a
<Credential> child element for each credential involved
in the rule, which is assigned a (rule-wide unique) iden-
tifier CredId as an attribute. The <Credential> can
contain <AttributeMatchAnyOf> child elements that al-
low to compare an attribute of that credential to a list
of values. The <CredentialRequirements> also con-
tain a <Condition> where conditions on the creden-
tials’ attributes can be expressed. Inside a condition, one
can refer to an attribute AttrId within a particular
credential by means of <CredAttributeDesignator>
which takes both CredId and AttrId as attributes. We
purposely did not add an optional CredId attribute to
<xacml:AttributeDesignator>, as the Issuer attribute
of the latter would conflict with the credential attribute
pl:Issuer. An example rule is given in Figure 2.

<Rule Effect="Permit" Ruleld="rule2">
<xacml:Condition>
<!-- XACML condition relevant for the rule’s applicability -->
</xacml:Condition>
<CredentialRequirements>
<Credential Credentialld='pp’>
<AttributeMatchAnyOf Attributeld="pl:CredentialType">
<MatchValue MatchId="pl:subtype-of">un:PhotoID</MatchValue>
</AttributeMatchAnyOf>
<AttributeMatchAnyOf Attributeld="pl:Issuer">
<MatchValue MatchId="xacml:anyURI-equal">http://www.usa.gov</MatchValue>
</AttributeMatchAnyOf>
</Credential>
<Condition>
<xacml:Apply FunctionId=’xacml:date-less-than-or-equal’>
<CredentialAttributeDesignator CredId="pp" AttributeId="un:DateOfBirth"/>
<xacml:Apply Functionld="xacml:date-subtract-yearMonthDuration">
<xacml:EnvironmentAttributeDesignator AttributeId="xacml:current-date"/>
<xacml:AttributeValue DataType="xs:duration">P21Y</xacml:AttributeValue>
</xacml :Apply>
</xacml:Apply>
</Condition>
</CredentialRequirements>
<ProvisionalActions>
<ProvisionalAction ActionId="pl:Reveal">
<xacml:AttributeValue DataType="xs:anyURI">un:Sex</xacml:AttributeValue>
<xacml:AttributeValue DataType="xs:anyURI">pp</xacml:AttributeValue>
</ProvisionalAction>
</ProvisionalActions>
</Rule>
Figure 2. Example rule stating that access is granted to users who are
at least twenty-one years old according to a piece of PhotoID issued by
the US government, but only after revealing the gender mentioned on the
same piece of PhotolD. Namespace prefix xacml refers to the XACML 3.0
namespace, xs to XML Schema, pl to http://www.primelife.eu, and

un to http://www.un.org.

Conditions on credential attributes are expressed using
the same schema as the <xacml:Condition> element (ex-
tended by the mentioned <CredAttributeDesignator>),
but are contained in a separate <Condition> child element
of a <Credential> element. The reason for this separa-
tion is that whenever no adequate claim is attached to a
resource request, the applicable policy must be returned.
Deciding applicability of a policy entails evaluating the
<xacml:Condition>, which is impossible when it involves
credential attributes that have not been revealed yet. To avoid
this issue, we keep the credential requirements separate from
elements relevant to the rule’s applicability.

Conditions can contain any combination of restrictions on
any credential attributes, including the issuer and the type of
the credential. For matching credential types, we introduce
a new function pl:subtype—of that checks whether the
presented credential is of a subtype of a specified credential
type as per the ontology that we will discuss in Section VI.

B. Provisional Actions

The <ProvisionalActions> element contains the ac-
tions that have to be performed by a requester prior to being
granted access. The types of actions that we model are:

— Consent: The requester has to explicitly consent to a
given statement, e.g., the terms of service. How consent is
given could depend on the underlying technology: it could
for example involve a cryptographic signature, or simply a
click on a button in the user interface.

— Attribute disclosure: Rather than assuming that all at-
tributes of a credential are revealed by default, the policy
explicitly lists which attributes of which credential need to
be revealed. Moreover, in order to fully leverage the power

of privacy-enhancing technologies such as anonymous cre-
dentials that allow the requester to prove conditions without
revealing the attribute values, this list does not (necessarily)
include the attributes that occur in the conditions. Apart from
the attribute and credential identifiers, the requirement to
reveal an attribute can optionally specify a data handling
policy describing how the attribute value will be treated.
In some cases, it is not the PEP who needs the attribute
value, but some third party. For instance, an online bookshop
may require the requester to reveal her address to a shipping
company, not to the bookstore itself. When using anonymous
credentials, such requirements can be efficiently fulfilled by
means of verifiable encryption [12]. We model this with an
optional fourth argument describing the entity to whom the
attribute must be disclosed.

— Consumption control: Consumption control allows the
policy author to impose limitations on how often the same
credential can be used to obtain access. For example, one
could impose that each ID card can only be used once to vote
in an online opinion poll. A consumption control statement
has to specify the credential to be consumed, the number of
units to spend, the limit of units that can be spent in total,
and a “consumption scope”. We refer to [5] for details on
their exact semantics.

Rather than restricting our extensions to the above ac-
tion types, we leave open the possibility to add new
types of provisional actions later. We do so by a mech-
anism similar to the one used for defining functions in
XACML. Namely, each provisional action is contained in
a <ProvisionalAction> element that includes an action
identifier as an attribute Act ionId. We define action identi-
fiers for the action types above, but allow users to add more
identifiers later.

Provisional actions can be parameterized with arguments,
e.g., the statement to be consented to in a Consent action.
We use an approach similar to how in XACML arguments
are passed to functions in the <xacml:Apply> element.
Namely, a <ProvisionalAction> can take any number of
<xacml :Expression> child elements, in which the action
arguments are encoded. For example, the policy in Figure 4
contains the requirement to reveal the gender as specified
on the identity card.

This is, however, slightly problematic for actions with
optional arguments: since arguments are passed as an un-
named sequence of <xacml :Expression> elements, pars-
ing them becomes ambiguous if more than one argument
is optional. For example, the requirement to reveal an
attribute takes one mandatory argument (the attribute to
be revealed) and three optional arguments (the recipient,
the data handling policy, and the credential identifier). We
solve this problem by introducing separate action identifiers
for each possible combination of specified attributes. For
example, for attribute disclosure we define the action iden-

tifiers pl:Reveal, pl:RevealTo, pl:RevealUnderDHP,
and pl:RevealToUnderDHP.

VI. CREDENTIAL TYPE ONTOLOGIES

For an effective extension of XACML that bundles at-
tributes into credentials, such organization of information,
which we call a credential type ontology, must be shared by
all involved parties. The best way to achieve this result is
to express the structures of the credentials in a widespread
standard language. Moreover, this language should allow for
the extension of existing types, so that credential issuers can
introduce new types within the context of the ontologies
already in use. We rely on the Web Ontology Language
(OWL) [13], which is XML-based, thus allowing for ontolo-
gies that are easily extended and exchanged by applications,
regardless of the platform.

In our model, each credential belongs to a specific type,
which defines the list of its attributes. The type of a creden-
tial is itself an attribute. Types and attributes are defined in
ontologies that can be referred to in the policy language
by means of URIs, possibly mapped onto prefixes (e.g.
http://www.un.org/ is mapped onto un:). For example,
the United Nations could design an ontology that defines the
attribute un:nationality as specifying the nationality of
a credential bearer, encoded as a two-character ISO 3166
country code, and the credential type un:Passport as
a digital template for real-world passports, comprised of
a list of attributes including un:nationality. Attributes
defined in an ontology can be reused in other ontologies:
a government may define a credential type for national ID
cards, including the un:nationality attribute. Credential
types are organized in a hierarchy with supertypes and
subtypes. If credential type A has a subtype B, then B
contains all the attributes of A with possible restrictions
on their values, and it may include additional attributes.
Multiple inheritance is allowed, meaning that a subtype
contains all the attributes of all its supertypes.

Our use of OWL for credential ontologies is based on
the following idea: a credential type is modeled as an
OWL class. In particular, the URI of the OWL class can
be used as the URI of the credential type, and we are
enabled to exploit the OWL class definition mechanism to
define which attributes a certain credential type includes.
Moreover, we can make use of OWL’s subclassing mech-
anism (rdfs:subClassOf) to model inheritance among
credential types in a very natural way, with OWL subclasses
corresponding to credential subtypes.

We define a root credential type with URI
pl:Credential (cf. Figure 3), which is the supertype
of all other credential types and contains the credential’s
issuer (pl:issuer) as an attribute.

All other credentials can be defined as a subclass
of the pl:Credential class. For instance, the United
Nations’ un:Passport credential type can be defined

<owl:Class rdf:about="Credential">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="issuer"/>
<owl:qualifiedCardinality
rdf:datatype="&xsd;nonNegativeInteger"> 1 </owl:qualifiedCardinality>
<owl:onDataRange rdf:resource="&xsd;anyURI"/>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Figure 3. An OWL class for credentials

as a subclass of pl:Credential by extending its at-
tribute list with attributes un:firstName, un:lastName,
un:dateOfBirth, un:nationality, and un:photo.

In our model, when a policy requires the presentation of
a credential of a certain type, a credential of any subtype
is accepted, as it contains all the information included in
the supertype, and some more. Function pl:subtype—-of
is introduced to be applied to two URIs to check whether
the first argument refers to a subclass of the class re-
ferred to by the second argument. Let us suppose a cre-
dential of type un:Passport is presented by an access
requester for the evaluation of a policy that requires an
instance of pl:Credential. By exploiting the capabilities
of ontology reasoners, function pl: subtype-of states that
un:Passport is indeed a subclass of pl:Credential, so
that the requester can be granted access.

VII. SAML AS CLAIMS LANGUAGE

Here we describe how we extend SAML for transporting
the claims defined in Section III. SAML is a standard
allowing for the exchange of certified attributes bundled
together into assertions, which are similarly structured as
credentials. The standard, however, allows only for the ex-
change of attribute values but not conditions on such values
nor notifications of provisional action fulfillment. To address
these issues, we use the standard’s extension points to embed
our <Condition> and <ProvisionalAction> elements
into SAML assertions. This allows for the expression of
conditions on attributes from one or more credentials as well
as action fulfillments, together with the necessary evidence.

VIII. ARCHITECTURAL EXTENSIONS

In the following we sketch how we adapt the XACML ar-
chitecture such that (1) the credential-based XACML policy
applicable to a request is communicated to the requester,
and (2) the policy can be evaluated on the basis of the
provided SAML claim. The modified architecture maintains
all standard XACML functionality, i.e., the modifications are
extensions that do not substitute existing functionality and
that are usable in combination with standard features.

We adapt the XACML communication model for allowing
the following two-round pattern. In the first round, the
requester specifies a resource and obtains the relevant policy
from the PEP; in the second round the requester sends the
same request with an additional SAML claim. Resending

the request is necessary because the XACML architecture
is stateless, meaning that the individual components do
not maintain information across multiple rounds. A PEP’s
response in the first round is embedded in an XACMLPolicy
Assertion element (cf. SAML profile of XACML [14]), to
which the requester is supposed to reply with an appropriate
SAML claim. The PEP grants or denies access depending
on the claim’s validity and the decision of the PDP.

We need to modify the PEP such that it obtains all policies
applicable to a user’s request and it sends them in a pre-
evaluated version to the user. The pre-evaluation substitutes
known attributes, e.g., environment attributes such as time
and date, with concrete values. One way to obtain all ap-
plicable policies is to exploit the ReturnPolicyldList feature
of XACML 3.0, which enables a PEP to learn from a PDP
all the relevant policy identifiers. The PEP can then obtain
the policies directly from the policy administration point
(PAP). Alternatively, the PDP could be modified to return
not only a list of PolicyIds to the PEP, but rather the
policies themselves.

When the PEP receives a request with an attached SAML
claim, it has to verify the validity of the claim and make it
available to the PDP. To verify the validity of the claim
evidence, we extend the PEP with an evidence verifier
component (cf. Figure 1). For every supported credential
technology ¢, this component has a plug-in that can verify
evidence specific to this technology. To make the claim avail-
able to the PDP, we introduce a claim handler component
within XACML’s context handler. If the claim is valid, the
PEP forwards it to the claim handler, which buffers it so
that it can be retrieved by the PDP. The PEP then forwards
the request (without attached claim) to the PDP.

A PDP evaluates a request from the PEP as usual w.r.t. the
rules in the policy. However, rules with credential require-
ments or provisional actions are treated specially. For such
rules to yield a Permit decision, not only its applicability
(specified by its target and condition) is relevant, but also
the fulfillment of the credential-requirements and provisional
actions if any are specified. If so, the PDP fetches the claim
from the claim handler. We extend the PDP with a rule veri-
fier component that, for given credential requirements, given
provisional actions, and a given claim, decides whether the
claim implies the requirements and fulfills all the provisional
actions. If so, then the rule evaluates to Permit, otherwise
it evaluates to Indeterminate.

IX. CONCLUSION

In this paper, we proposed extensions to the industry
standards XACML and SAML to add support for credential-
based access control that fully leverage the power of privacy-
preserving technologies such as anonymous credentials. A
prototype engine for the language and architecture exten-
sions that we defined is currently being developed under the
auspices of the European Commission’s PrimeLife project.

Our current architecture requires a new access control
process with new claims to take place for each resource
request with associated credential requirements. In future
work, we will investigate to which extent this can be avoided
by comparing the relevant policy to previously made claims.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 216483
for the project PrimeLife.

REFERENCES

[1] P. Bonatti and P. Samarati, “A unified framework for regulat-
ing access and information release on the web,” JCS, vol. 10,
no. 3, 2002.

[2] J. Li, N. Li, and W. Winsborough, “Automated trust negotia-
tion using cryptographic credentials,” in ACM CCS 2005.

[3] C. A. Ardagna, J. Camenisch, M. Kohlweiss, R. Leenes,
G. Neven, B. Priem, P. Samarati, D. Sommer, and M. Verdic-
chio, “Exploiting cryptography for privacy-enhanced access
control,” JCS, vol. 18, no. 1, 2010.

[4] C. A. Ardagna, S. De Capitani di Vimercati, S. Paraboschi,
E. Pedrini, P. Samarati, and M. Verdicchio, “Expressive and
deployable access control in open web service applications,”
IEEE Transaction on Services Computing, 2010, to appear.

[5] J. Camenisch, S. Moedersheim, G. Neven, F.-S. Preiss, and
D. Sommer, “ A card requirements language enabling privacy-
preserving access control,” in ACM SACMAT 2010, to appear.

[6] D. Chaum, “Security without identification: Transaction sys-
tems to make big brother obsolete,” CACM, vol. 28, no. 10,
1985.

[7] S. Brands, “Rethinking public key infrastructure and digital
certificates— building in privacy,” Ph.D. dissertation, Eind-
hoven Institute of Technology, The Netherlands, 1999.

[8] J. Camenisch and A. Lysyanskaya, “An efficient system
for non-transferable anonymous credentials with optional
anonymity revocation,” in EUROCRYPT 2001, ser. LNCS,
vol. 2045. Springer, 2001.

[9] S. Jajodia, P. Samarati, M. Sapino, and V. Subrahmanian,
“Flexible support for multiple access control policies,” ACM
TODS, vol. 26, no. 2, 2001.

[10] M. Winslett, N. Ching, V. Jones, and I. Slepchin, “Assuring
security and privacy for digital library transactions on the
web: Client and server security policies,” in ADL 1997.

[11] OASIS, “eXtensible Access Control Markup Language
(XACML) Version 3.0,” 2009.

[12] J. Camenisch and V. Shoup, “Practical verifiable encryption
and decryption of discrete logarithms,” in CRYPTO 2003, ser.
LNCS, vol. 2729. Springer, 2003.

[13] W3C, “OWL 2 Web Ontology Language,” 2007.
[14] OASIS, “SAML 2.0 profile of XACML v2.0,” 2005.

<pl:Policy xmlns:cr="http://www.primelife.eu/ppl/credential®
xmlns:pl="http://www.primelife.eu/ppl"

xmlns:xacml="urn:oasis:names:tc:xacml:2.0:policy:schema:os"

"http://www.w3.0rg/2001/XMLSchema-instance"

"http://www.primelife.eu/ppl PrimeLifeSchema.xsd

acml:2.0:policy:schema:os http://docs.oasis-open.org/xacml/access_control-xacml-2.0-policy-schema-os.xsd"

xmlns:xsi;

xsi:schemaLocatio

urn:oasis:names:tc:
PolicyId="policyl" RuleCombiningAlgl

<xacml:Target/>
<pl:Rule Effect="Permit" RuleId="rulel">

<xacml:Target>
<xacml:Resources>
<xacml:Resource>
<xacml:ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
<xacml:AttributeValue DataType="xs:anyURI">http://www.store.com/subscribe.html</xacml:AttributeValue>
<xacml:ResourceAttributeDesignator DataType="xs:anyURI" AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>
</xacml:ResourceMatch>
</xacml:Resource>
</xacml:Resources>
</xacml:Target>

<pl:CredentialRequirements>
<pl:Credential CredId="#eid">

<pl:AttributeMatchAnyOf AttributeId="pl:Issuer">

<pl:MatchValue DataType="xs:anyURI" MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">http://www.fgov.be</pl:MatchValue>

</pl:AttributeMatchAnyOf>

<pl:AttributeMatchAnyOf AttributeId="pl:CredentialType">

<pl:MatchValue DataType="xs:anyURI" MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">http://www.fgov.be/eID</pl:MatchValue>
</pl:AttributeMatchAnyOf>
</pl:Credential>

<pl:Credential CredId="#creditcard">
<pl:AttributeMatchAnyOf AttributeId="pl:Issuer">
<pl:MatchValue DataTyp s:anyURI" MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURT-equal">http://www.visa.com</pl:MatchValue>
<pl:MatchValue DataType="xs:anyURI" MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">http://www.amex.com</pl:MatchValue>
</pl:AttributeMatchAnyOf>
<pl:AttributeMatchAnyOf AttributeId="pl:CredentialType">
<pl:MatchValue DataType="xs:anyURI" MatchId="pl:subtype-of">http://www.banking.org/CreditCard</pl:MatchvValue>
</pl:AttributeMatchAnyOf>

</pl:Credential>

<pl:Condition>
<xacml:Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
<xacml:Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-less-than-or-equal™>
<pl:CredentialAttributeDesignator CredId="#eid" DataType="xs:date" AttributeId="http://www.fgov.be/eID/birthdate"/>
urn:oasis:names:tc:xacml:1.0:function:date-subtract-yearMonthDuration">

<xacml:Apply FunctionT
<xacml:EnvironmentAttributeDesignator DataType="xs:date" AttributelId="urn:oasis:names:tc:xacml:1.0:environment:current-date"/>
<xacml:AttributeValue DataType="http://www.w3.org/TR/2002/WD-xquery-operators-20020816#yearMonthDuration">P18Y</xacml:AttributevValue>
</xacml:Apply>
</xacml:Apply>
<xacml:Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-greater-than">
<pl:CredentialAttributeDesignator CredId="#creditcard" DataType="xs:date" AttributeId="http://www.banking.org/CreditCard/expirationdate"/>
<xacml:EnvironmentAttributeDesignator DataType="xs:date" Attributeld="urn:oasis:names:tc:xacml:1.0:environment:current-date"/>
</xacml:Apply>
<xacml :Apply FunctionId
<pl:CredentialAttributeDesignator CredId:
<pl:CredentialAttributeDesignator CredId:
</xacml:Apply>
<xacml:Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<pl:CredentialAttributeDesignator CredId="#eid" DataType="xs:string" AttributeId="http://www.fgov.be/eld/lastname"/>
<pl:CredentialAttributeDesignator CredId="#creditcard" DataType="xs:string" AttributeId="http://www.banking.org/CreditCard/surname"/>
</xacml:Apply>
</xacml:Apply>
</pl:Condition>

rn:oasis:names:tc:xacml:1.0:function:string-equal”>
eid" DataType="xs:string" AttributeId="http://www.fgov.be/eId/firstname"/>
"#creditcard” DataType="xs:string" AttributeId="http://www.banking.org/CreditCard/name"/>

</pl:CredentialRequirements>

<pl:ProvisionalActions>
<pl:ProvisionalAction ActionId="http://www.primelife.eu/ppl/RevealUnderDHP">
<xacml:AttributeValue DataTyp: xs:anyURI">http://www.fgov.be/eID/address</xacml:AttributevValue>
<xacml:AttributeValue DataType="xs:string">
May be used for shipping, administration, statistics, and marketing purposes.
Will be deleted within one year.
</xacml:AttributevValue>
<xacml:AttributeValue DataType="xs:anyURI">#eid</xacml:AttributeValue>
</pl:ProvisionalAction>

<pl:ProvisionalAction ActionId="http://www.primelife.eu/ppl/RevealToUnderDHP">
<xacml:AttributeValue DataType="xs:anyURI">http://www.banking.org/CreditCard/cardnumber</xacml:AttributevValue>
<xacml:AttributeValue DataType="xs:anyURI">http://www.ogone.com</xacml:Attributevalue>
<xacml:AttributeValue DataType="xs:string">
May be used for payment purposes.
Will be deleted within one month.
</xacml:Attributevalue>
<xacml:AttributeValue DataType="xs:anyURI">#creditcard</xacml:AttributeValue>
</pl:ProvisionalAction>

<pl:ProvisionalAction ActionId="http://www.primelife.eu/ppl/RevealToUnderDHP">
<xacml:AttributeValue DataType="xs:anyURI">http://www.banking.org/CreditCard/expirationdate</xacml:AttributevValue>
<xacml:AttributeValue DataType="xs:anyURI">http://www.ogone.com</xacml:Attributevalue>
<xacml:AttributeValue DataType="xs:string">
May be used for payment purposes.
Will be deleted within one month.
</xacml:Attributevalue>
<xacml:AttributeValue DataType="xs:anyURI">#creditcard</xacml:AttributeValue>
</pl:ProvisionalAction>
</pl:ProvisionalActions>

</pl:Rule>

</pl:Policy>

Figure 4. Full example policy.

APPENDIX

In Figure 4, we give a more elaborate example of
a full XACML policy enhanced with our credential-
based extensions. The policy specifies the restrictions
that apply to create an account at store.com. It con-
tains a single rule that protects access to the web page
http://www.store.com/subscribe.html. The policy
states that in order to create an account, the user has to
prove that she owns an electronic identity (eID) card from
the Belgian government and a credit card issued by either
Visa or American Express. The conditions applying to these
credentials are

« the birth date on the eID card must prove that the holder

is currently older than 18 years;

« the credit card must not be expired, i.e., the expiration

date must be in the future;

o and the first and last names on the eID card and the

credit card have to match.

Apart from satisfying those conditions, the user must
reveal her address to store.com under a data handling policy
that says that it will be used for the purposes of shipping,
administration, statistics, and marketing, and that it will be
deleted within one year. She also has to reveal her credit
card number and expiration date to the payment processor
ogone.com, who will use the information for payment pur-
poses only and delete it within one month.

