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1 Introduction

We all increasingly use electronic services in our daily lives. To do so, we currently have no
choice but to provide plenty of personal information for authorization, billing purposes, or as
part of the terms and conditions of service providers. Dispersing all these personal information
erodes our privacy and puts us at risk of abuse of this information by criminals. Therefore,
these services and their authentication mechanisms should be built in a way that minimizes
the disclosed personal information. For instance, to access a resource, users should not need
to identify themselves but rather only to prove to the resource provider that they possess the
necessary attributes (e.g., rights or properties) which are required for the access. In fact, in
Europe it is widely acknowledged that to secure the future digital infrastructure one must
employ this kind of attribute-based access control and use so-called attribute-based credentials
or minimal disclose tokens (see, e.g., [RIS10,IA11]).

The cryptographic research literature has put forth a large body of protocols that allow for
privacy-friendly access control. For instance, group signature [CvH91] and identity escrow [KP98]
schemes allow a user to prove that she has authorization (i.e., is member of a group of people
who all share the same property) without revealing her identity. Nevertheless, in case of abuse
of this anonymity, group signature and identity escrow schemes allow a designated party to
lift the anonymity and to identify the abusing user. The generalization of these schemes are
anonymous credentials or pseudonym systems [Cha81,Bra99,CL01b,LRSW99]. Such schemes
feature a plurality of organizations who assign attributes to users by issuing attribute-containing
credentials. Users are known to the different issuers under different pseudonyms. Later, when
users need to authenticate somewhere, they can do so in the most privacy-protecting manner,
i.e., users can just prove that they possess credentials asserting them the attributes required by
the authentication policy.

It is well known that the cryptographic assumptions underlying all known realizations of
these privacy-protecting schemes can be broken with quantum computers. The only exception
to this is the group signature scheme by Gordon, Katz, and Vaikuntanathan [GKV10]. Their
scheme works on ordinary computers but is based on the hardness of lattice problems, which
are believed to be immune to quantum computers. While so far only small quantum computers
breaking toy keys could be built, it seems very plausible that in just a few years computers
breaking currently used keys can be built [Los10]. Even if quantum computers are not considered
an immediate threat, the hardness of lattice problems against sub-exponential time adversaries
and their provable worst-case to average-case relation makes it desirable to build cryptographic
schemes from these problems.

In this paper we provide a number of new schemes for privacy-protecting authentication
with security based on lattice problems in the random-oracle model. In particular, as our first
contribution, we define and present an anonymous attribute token scheme without anonymity
revocation (AAT–R). Here, a user can obtain a credential from a group manager or issuer, the
credential containing the attributes that the manager wants to assert to the user. Later, the
user can anonymously authenticate to a verifier by generating an authentication token from her
credential, the token revealing only a subset of the attributes that are contained in the credential.
Such authentication tokens are anonymous, i.e., a token containing a set of attributes could
originate from any user who has been asserted a superset of these attributes. Minimal disclosure
tokens as implemented by Microsoft’s U-Prove [BP10] are an example of an AAT–R scheme.

As our second and main contribution, we extend our scheme to an anonymous attribute
token scheme with anonymity revocation (AAT+R), where the group manager additionally has
the power to reveal the identity of the user who generated a given token. Group signatures can
be seen as special case of AAT+R schemes where the manager issues to all users a credential
without attributes (or a single attribute with a fixed value). Our scheme provides anonymity
to honest users in the presence of adversaries with adaptive access to the opening functionality.
This is a major improvement over the group signature scheme of Gordon et al., who provide a
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much weaker form of anonymity. In their model, anonymity may break down for all users in the
system as soon as a single signature (or token in our terminology) is opened, even for users who
never misbehaved and never had their tokens opened. Hence, their scheme can only be used as
long as no signature (token) is opened—an event that users are typically not even aware of. This
is a severe limitation that we overcome.

We furthermore show how our AAT–R and AAT+R schemes can be combined to obtain a
new AAT+R scheme that protects users from framing by a dishonest group manager. That is, in
this resulting third scheme, no one except the user herself can produce tokens that when opened
will be attributed to the user. This is a further property that the Gordon et al. group signature
scheme does not provide and which we believe is rather important when one wants to have
accountability. Group signatures obtained from our AAT+R schemes do not only provide better
security compared to the Gordon et al. scheme, but also offer other advantages: the manager’s
public and secret key are independent of the number of users (versus linear in their scheme1)
and users can join dynamically (in theirs, all the users’ keys need to be generated at setup time).
Thus, while our main focus is on anonymous attribute token schemes, we present as a corollary
the first lattice-based, non-frameable group signature scheme with full anonymity.

As an aside, to construct our scheme, we improve upon known tools and introduce a num-
ber of new building blocks, which we believe are of interest in their own right. We provide a
verifiable encryption proof protocol for the CCA2-secure encryption scheme of Peikert [Pei09]
and introduce and construct single-signer aggregate signatures as a restricted, but useful, form
of aggregate signatures [BGLS03].

Related Work. We do not claim anonymous attribute token to be a new primitive: the U-Prove
scheme [BP10] and the signature scheme with its proof protocols by Camenisch and Lysyan-
skaya [CL04] actually realize instantiations of it based on the discrete logarithm assumption and
the strong RSA assumption, respectively. Nevertheless, to the best of our knowledge, an anony-
mous attribute token scheme (with or without anonymity revocation) has never been formally
defined. As we have pointed out already, group signature schemes can be seen as a special case
of AAT+R schemes.

Several group signature schemes have been proposed in the literature. Most of these are based
on strong RSA [ACJT00,AST02,CL01a] or on bilinear maps [BBS04,BS04,CL04,DP06,BCN+10].
The scheme due to Gordon et al. [GKV10] is the only based on assumptions that resist attacks
by quantum computers.

Attribute-based signatures [MPR11] are a related primitive where signatures cannot be
opened and where the signer can prove any predicate over the attributes that can be expressed
as a monotone span program, which includes circuits of threshold gates. Attribute-based group
signatures [Kha07] are a similar primitive where signatures can be opened by a dedicated au-
thority, and is thereby closely related to our notion of AAT+R schemes. Unfortunately, however,
the security notions proposed in [Kha07] are flawed.2

Ring signatures [ST01] are another privacy-enabling primitive which can be seen as an ad-
hoc group signature scheme without a central group manager and without the possibility for
anonymity revocation. Ring signatures can also be constructed from our AAT–R scheme, as we
shall point out later.

1 Note that secret keys can always be made of constant length by storing the random seed used to generate the
key instead of the key itself. Likewise, one can always publish the hash of the public key instead of the public
key itself. The first trick involves re-generating keys, which is particularly costly in lattice-based schemes that
use trapdoors. The latter trick comes at the cost of having to attach the full public key to each signature or
token.

2 The “selective-policy” anonymity notion of [Kha07] allows linkability of signatures when a signer signs the same
message with the same set of revealed attributes twice. The traceability notion merely implies that any valid
signature will open to some user. There is no guarantee that it opens to the actual signer behind the signature,
however, nor does the notion offer any protection against users claiming attributes that they do not possess.
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The most general privacy-enabling primitive are probably anonymous credential systems with
additional features such as proving predicates over attributes, cryptographic pseudonyms, and
partially blind issuing protocols to protect users against framing attacks by malicious issuers.
While they are quite close to anonymous attribute token schemes, we leave it as an open problem
to construct a full-fledged anonymous credential system based on lattices.

Organization of the Paper. After a brief preliminary section, we define anonymous attribute
token schemes in Section 3. Then, we introduce, analyze, and discuss the building blocks for our
constructions in Section 4, followed by our constructions in Section 4.2. Based on these results, we
describe how to achieve group signatures and restricted anonymous credential systems in Section
6. There, we also discuss open research problems before we conclude the paper in Section 7.

2 Preliminaries

The statement x ←$ X means that x is chosen uniformly at random from the finite set X. A
function is negligible if it vanishes faster than 1/p(n) for any polynomial p. All logarithms are
base 2 and we identify {1, . . . , k} with [k] and (xi)

b
i=a with (xa, . . . , xb). Furthermore, [a, b]Z :=

[a, b] ∩ Z. Instead of a ≡ b (mod q), we simply write a ≡ b. When we write “‖”, we mean the
concatenation of strings or matrix columns. The concatenation of two vectors x,y is denoted
[x,y]. The notation #S denotes the cardinality of a finite set S.

In this work, we only require full-rank lattices. A lattice in Rn is a discrete subgroup Λ =
{
∑n

i=1 xi bi |xi ∈ Z}, typically represented by a matrix B = [b1, . . . ,bn] ∈ Zn×n of R-linearly
independent vectors. The matrix B is a basis of the lattice Λ and we write Λ = Λ(B). The number
of linearly independent vectors in B is the dimension dim(Λ). For a lattice Λ(B) with B ∈ Zn×n
define the (full-rank) dual lattice as the set of all x ∈ Rn with 〈x,y〉 ∈ Z for all y ∈ Λ(B). The
Gram-Schmidt orthogonalization (GSO) B̃ = [b̃1‖ . . . ‖b̃n] of the columns of B is recursively
computed by letting b̃i+1 be the orthogonal projection of bi+1 onto span(b̃1, . . . , b̃i)

⊥. The
length of B is defined as ‖B‖ := maxi∈[n](‖bi‖2).

One of the main computational problems in lattices is the approximate shortest vector prob-
lem (SVP). Given a basis B of Λ and an approximation factor γ ≥ 1, the task is to find a non-zero
vector v ∈ Λ with length at most γ times the length of a shortest vector in Λ. A related problem
is the approximate shortest independent vector problem (SIVP), where one is supposed to find
a set {v1, . . . ,vn} of linearly independent vectors in Λ such that maxi ‖vi‖2 ≤ γλn. Here, λn
denotes the n-th successive minimum of Λ, which is the smallest radius of a sphere that contains
n linearly independent lattice vectors. For polynomial (in the dimension) approximation factors,
which are relevant for cryptography, the best known algorithms require exponential space ×
time, e.g., [MV10].

In cryptography, we use lattices of a special form, which we call q-ary lattices: for q ∈ N,
A ∈ Zn×mq , we define Λ⊥q (A) := {v ∈ Zm : A v ≡ 0}. Its, up to scaling, dual lattice Λq(A) is

defined as {w ∈ Zm : ∃e ∈ Zn s.t. Ate ≡ w}. The main computational problem in Λ⊥q (A) is the
following “short integer solution” (SIS) problem: given n,m, q, uniformly random A, and a norm
bound 1 ≤ ν < q, find v ∈ Λ⊥q (A) with 0 < ‖v‖2 ≤ ν. The SIS problem was introduced and
analyzed by Ajtai [Ajt96] but there are numerous improvements to the analysis [MR07,GPV08].
We will also use the (equivalent) inhomogeneous problem ISIS, where the task is to find a short
vector x that solves Ax ≡ y given y. For ν ≤ poly(n), prime q ≥ νg(n) for g(n) = ω(

√
n log(n)),

and m ≥ 2n log(q), the average-case SIS(n,m, q, ν) is at least as hard as SIVP with γ = νÕ(
√
n)

in the worst case. For Λq(A), we consider the following “learning with errors“ (LWE) problem:
given n,m, q,A, and m “noisy” inner products b ≡ Ats + e mod q, where e is chosen from
a certain error distribution Ψ over Zm. The task is to recover s ∈ Znq . This search version of
LWE is at least as hard as solving the decision problem, i.e., distinguish (A,b) from uniform.
The standard error distribution is a spherical discretized normal distribution Ψmα with width
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parameter to α = α(n) ∈ (0, 1). For prime q > 2
√
n/α and m ≤ poly(n), these problems are,

on the average, at least as hard as SIVP with γ = Õ(n/α) in the worst case [Reg09] under a
quantum reduction. A similar classical reduction can be found in [Pei09] at the expense of more
constraints. We will use a different, true discrete Gaussian error distribution as defined below.

Gentry et al. [GPV08] define a special type of one-way trapdoor function called a preimage
samplable function. For parameters n ∈ N, q = q(n) = poly(n), m = m(n) = Ω(n log(q)),
L̃ = L̃(n) = O(n log(n)), ρ(n) = ω(

√
log(n)), and η ≥ L̃ρ(m) this one-way trapdoor function is

defined as follows.

– GPVGen(1n) generates a matrix A ∈ Zn×mq , distributed statistically close to uniform, and a

secret trapdoor T ∈ Zm×m such that AT ≡ 0 and
∥∥∥T̃∥∥∥ ≤ L̃.

– The one-way function associated to A is fA : Zm → Znq : x 7→ Ax (mod q).

– GPVInvert(A,T,y, η) samples elements from f−1A (y) so that (x,Ax (mod q)) as well as
(GPVInvert(A,T,y, η),y) are statistically close for x ∼ DZm,η and y ←$ Znq for a certain
distribution D, defined below.

– The samples x returned by GPVInvert have a conditional min-entropy of ω(log(n)), condi-
tioned on Ax ≡ y and ‖x‖2 ≤ η

√
m (or, ‖x‖∞ ≤ ηρ(m)). Refer to [GPV08,AP09,Pei10] for

further details.

Let Λ be a lattice. We define the distribution DΛ,η,c with parameter η as in [GPV08]: for all

x ∈ Λ + c, it is DΛ,η,c(x) =
Dη(x)∑

y∈Λ+cDη(y)
for Dη(x) = 1/ηm exp(−π‖x‖2/η2). For c = 0, we

write DΛ,η. Note that, as in [GKV10], this distribution will serve as an error distribution for
LWE later.

Theorem 1 ([GPV08]). The family is collision-resistant if SIS(n,m, q, 2η
√
m) is hard.

The GPV signature scheme [GPV08] is essentially a full-domain hash scheme [BR93] based
on this one-way function. It uses A as a public key and the trapdoor T as the signing key. A
signature on message M is a vector σ such that Aσ ≡ H(M) and ‖σ‖2 ≤ η

√
m which can be

computed using the probabilistic GPVInvert algorithm.3 Signing is stateful, i.e., when the same
message is signed twice, the same signature is returned.

3 Syntax and Security of Anonymous Attribute Tokens

An anonymous attribute token (AAT) scheme can be seen as an extension of group signatures
or as a simplification of anonymous credentials where the issuer can assign a list of attributes
to a user’s signing key. When authenticating to a verifier, the user can selectively reveal some
of these attributes in a token and convince the verifier that she has a valid credential (i.e.,
signing key with attributes) certifying the claimed attribute values, without revealing any in-
formation about the non-revealed attributes and without making her tokens linkable – that is,
more linkable than directly implied by the revealed attributes. We define and design two kind of
schemes: AAT without anonymity revocation (AAT–R) where anonymity is absolute, i.e., open-
ing tokens is impossible, even for the issuer; and AAT with anonymity revocation (AAT+R),
where the manager can uncover the user who created a given token. Minimal disclosure tokens
as implemented by Microsoft’s U-Prove [BP10] are an example of an AAT–R scheme.

Our syntax and security definitions take inspiration from those for group signatures as put
forward by Bellare et al. [BMW03], but we add support for dynamic issuing of credentials. We
first lay out the definitions for the revocable anonymity setting (AAT+R), and then explain the
differences to the AAT–R setting. We note that an AAT+R scheme does not trivially yield an
AAT–R scheme, because in the former the manager can always open tokens, while the latter
requires that even the manager cannot link tokens. The inverse relation does not hold either due
to the lack of an opening algorithm in AAT–R schemes.

3 With negligible probability, GPVInvert returns σ = 0 or ‖σ‖2 > η
√
m. In this case, the algorithm starts over.
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Syntax of AAT+R schemes. An AAT+R scheme is parameterized by security parameter n,
maximum number of users umax, and maximum number of attributes per credential `max, and
is defined by the following algorithms.

– The manager runs MKeyGen on 1n, umax to generate his public key mpk and corresponding
secret key msk .

– When a user with index u requests a credential for an ordered list of attribute values (ai)
`
i=1,

with ` ≤ `max, the manager runs Issue on input msk , u, and (ai)
`
i=1 to generate a credential

cred .
– A user generates an authentication token τ revealing a subset of attribute values (ai)i∈R

for R ⊆ [`] and authenticating a message M by running the GenToken algorithm on input
mpk , cred , (ai)

`
i=1, R, and M . The message M can be any string; in practice, it could encode

authentication context information such as the identity of the verifier, a timestamp, a session
identifier, or a random nonce.

– To verify a token, the verifier runs the VToken algorithm on input mpk , the token τ , the set
R, the revealed attribute values (ai)i∈R, and the message M . It outputs 1 or 0, indicating
the validity of τ .

– Using the Open algorithm on input msk , a token τ , a set R, the revealed attributes (ai)i∈R,
and a message M , the manager recovers the index u of the user that generated the token.

Correctness is defined in the straightforward way that any honestly generated token will
be accepted. Security consists of anonymity, requiring that tokens generated by the same user
cannot be linked, and traceability, requiring that no adversary can produce a token that cannot
be opened or that, when opened, falsely incriminates an honest user.

Anonymity of AAT+R schemes. We consider full anonymity here, in other works (e.g., [BBS04])
often referred to as CCA2-anonymity, where the adversary has access to an opening oracle. The
adversary A is given the manager’s public key mpk as input. It has access to an initialization
oracle, an issuing oracle, and an opening oracle, which offer the following functionalities.

– The initialization oracle, on input user index u and attribute values (ai)
`
i=1, generates a

credential credu ←$ Issue(isk , u, (ai)
`
i=1). The oracle does not generate any direct output to

A, but stores credu locally, outside A’s view. It can only be queried once for each user u.
Once user u has been initialized, the adversary can query the issuing and token generation
oracles for u.

– The issuing oracle, on input a user index u, returns credu if a credential for u was previously
initialized, or ⊥ otherwise.

– The opening oracle, on input token τ , attribute indices R ⊆ [`], attribute values (ai)i∈R and
message M , returns u← Open(msk , τ, R, (ai)i∈R ,M).

At the end of the first phase, A outputs user indices u0, u1 ∈ [umax], a set R ⊆ [`], and a message
M . Let (ai,0)

`0
i=1 and (ai,1)

`1
i=1 be the attributes with which u0 and u1 were associated by the

initialization oracle, respectively. If one of u0 or u1 has not been initialized, or if ai,0 6= ai,1 from
some i ∈ R, then A loses the game. Otherwise, the challenger chooses a random bit b, generates a
token τ∗ ←$ GenToken(ipk , opk , credub , (ai,b)

`b
i=1 , R,M) and hands it to A. The latter is allowed

to make any additional oracle queries except submitting τ∗ to the opening oracle. Eventually it
outputs a bit b′ and wins the game if b′ = b.

Traceability of AAT+R schemes. The adversary A is given as input the manager’s public key
mpk . Apart from the initialization, issuing, and opening oracles described above, it has access
to a token generation oracle offering the following functionality.

– The token generation oracle, on input user index u, attribute indices R ⊆ [`], and message
M , returns a token τ ←$ GenToken(mpk , credu, (ai)

`
i=1 , R,M) and returns τ to the adversary

if a credential for u was previously initialized, or returns ⊥ otherwise.
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At the end of the game, A outputs τ∗, R∗, (a∗i )i∈R∗ , and M∗. Let u∗ ← Open(msk , τ∗, R∗,
(a∗i )i∈R∗ ,M

∗) be the index of the user to whom the token is attributed by the opening algorithm.
The adversary wins the game if VToken(mpk , ipk , R∗, (a∗i )i∈R∗ ,M

∗) = 1 and either

– A initialized u∗ with attributes (ai)
`
i=1 such that ai 6= a∗i for some i ∈ R∗, or

– A never queried the issuing oracle on u∗ and never queried a token by u∗ on M∗ and R∗.

Syntax and security of AAT–R schemes. An AAT–R scheme does not have an Open algorithm.
It does, however, have an additional VCred algorithm that a user runs, upon receiving a creden-
tial cred , on input mpk , cred , (ai)

`
i=1, to check whether cred is a well-formed credential. The

algorithm returns 1 in case it is well-formed, or 0 if not.

We define a stronger anonymity notion for AAT–R than for AAT+R. The adversary A is
given the manager’s keys mpk and msk as input. At the end of the first phase, A outputs user
indices u0, u1 ∈ [umax], credentials credu0 , credu1 , lists of attribute values (ai,0)

`0
i=1 , (ai,1)

`1
i=1, a

set R ⊆ [min(`0, `1)], and a message M . If VCred(mpk , cred b, (ai,b)
`b
i=1) = 0 for either of b ∈ {0, 1}

or if ai,0 6= ai,1 from some i ∈ R, then A loses the game. Otherwise, the challenger chooses a

random bit b, generates a token τ∗ ←$ GenToken(mpk , credub , (ai,b)
`b
i=1 , R,M) and hands it to

A. The latter outputs a bit b′ and wins the game if b′ = b.

The traceability notion for AAT+R is replaced with the notion of unforgeability for AAT–R.
In the unforgeability experiment, the adversary is given mpk as input. It has access to the
same initialization, issuing, and token generation oracles as in the traceability game above.
The adversary wins the game if VToken(mpk , τ∗, R∗, (a∗i )i∈R∗ ,M

∗) = 1 and if for all users u

initialized with attributes (ai)
`
i=1 such that ai = a∗i for all i ∈ R∗, A never queried the issuing

oracle on u and never queried a token for u,M∗, R∗.

4 An Anonymous Attribute Token Scheme without Revocation

Our anonymous attribute token schemes build upon techniques in the GKV group signature
scheme by Gordon et al. [GKV10]. We briefly recall their scheme and explain the fundamen-
tal differences in the way we issue credentials (signing keys) and generate tokens (signatures).
In the GKV scheme, each user u is assigned a matrix Au as public key and a correspond-
ing trapdoor matrix Tu as signing key. To group-sign a message M , user u first uses Tu to
compute a GPV signature [GPV08] σu on M , this GPV-signature being a short vector such
that Auσu ≡ H(M), where H is a hash function. She generates a “fake” GPV-signature σv
for all other users v 6= u through Gaussian elimination, i.e., σv will be a long vector such
that Avσv ≡ H(M). She subsequently encrypts each of these signatures using a variant of the
Regev encryption scheme [Reg09] to obtain ciphertexts τ v = Bvs + σv for v = 1, . . . , umax,
where Bv are matrices such that AvB

t
v ≡ 0 and which are included in the group’s public key.

The encrypted GPV-signatures can still be verified by checking whether or not Avτ v ≡ H(M)
holds. The group signature contains the vectors τ 1, . . . , τumax plus a non-interactive witness-
indistinguishable proof [MV03] that at least one of the encrypted GPV-signatures is actually
short. Group signatures can be opened by decrypting τ v using a trapdoor Sv associated to Bv

and checking which of the signatures σv is short.

Our AAT–R scheme uses only a single pair of matrices A,B for the entire group, as opposed
to a pair of matrices for each user. Only the manager knows the trapdoor T corresponding to
A. To prevent anyone, including the manager, from knowing a trapdoor corresponding to B, the
latter matrix is determined by a common reference string. The credential of a user u is a list of
GPV signatures σu,i such that Aσu,i ≡ H(u‖i‖ai). A first idea to create a token for attribute ai
and message M could be to encrypt σu,i as in the GKV scheme and include M as an argument
to the random oracle in the non-interactive proof that one of the ciphertexts τ v encrypts a short
vector.
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The problem with this approach, however, is that two signatures by the same user u can be
linked by checking whether τu − τ ′

u is a lattice point. This can be fixed by re-randomizing the
GPV signatures, for both real and fake ones, with a small short random x ∼ DZm+n,η. To enable
verifiability, we compute y← Ax mod q and append a non-interactive witness-indistinguishable
proof of knowledge of a short vector x′ such that Ax′ ≡ y. This proof is the Fiat-Shamir
transformation of a generalization of Lyubashevsky’s identification scheme [Lyu08a], where the
message M is included as an argument in the hash.

signatures is short.

This approach of treating each attribute separately has the obvious disadvantage that it blows
up the signature size with a factor of #R ≤ `. We can obtain shorter tokens by observing that
GPV signatures support a limited form of aggregation [BGLS03]. Namely, the GPV signatures
σu,i for i ∈ R can be summed up to form an aggregate signature αu ←

∑
i∈R σu,i. The aggregate

satisfies Aαu ≡
∑

i∈R H(u‖i‖ai) and is still “somewhat” short. Enabling such aggregation in
Section 4.1.4 comes at the price of having to choose slightly larger security parameters, but only
by a factor of log(#R).

4.1 Cryptographic Ingredients

4.1.1 Sampling Orthogonal Lattices with Trapdoors Revisited. Gordon et al. [GKV10]

present an algorithm that, given a matrix B ∈ Zn×(m+n)
q , samples a matrix A ∈ Zn×(m+n)

q and
an associated trapdoor T ∈ Zn×(m+n) such that ABt ≡ 0. We give a construction method based
on [GKV10] that is more efficient and allows for better (i.e., shorter) trapdoors.

Proposition 1. There exists a probabilistic polynomial-time (PPT) algorithm OrthoSamp that,

on input B = B1‖B2 ∈ Zn×(m+n)
q with B2 ∈ (Zn×nq )∗, outputs a pair (A,T) ∈ Zn×(m+n)

q ×
Zn×(m+n) such that (1) ABt ≡ 0; (2) A is distributed statistically close to uniform (conditioned

on ABt ≡ 0); (3) AT ≡ 0; and (4)
∥∥∥T̃∥∥∥ ≤ L̃.

From [CHKP10], we adopt the notion of extending a lattices basis to a larger dimension.
The corresponding algorithm ExtBasis takes as input a matrix A1, a basis T1 of Λ⊥q (A1), and
an extension A2. It picks a uniformly random V ∈ Zm×nq such that A1V ≡ −A2. Its output is

a basis T =

(
T1 V

0 In

)
of Λq(A) for A = A1‖A2 with

∥∥∥T̃∥∥∥ ≤ ∥∥∥T̃1

∥∥∥ ≤ L̃.

Proof. First, generate (A1,T1)← GPVGen(1n). Then, set A2 ← −A1B
t
1(B

−1
2 )t = [a

(2)
1 , . . . ,a

(2)
n ]

and compute the basis T ← ExtBasis(A1,T1,A2). Output A = A1‖A2 and T. The output
satisfies (1) because ABt ≡ A1B

t
1+A2B

t
2 ≡ A1B

t
1−A1B

t
1(B

−1
2 )tBt

2 ≡ 0. It satisfies (2) because
the output A1 of GPVGen is distributed statistically close to uniform. It satisfies (3) because
AT ≡ A1T1‖(A1V+A2) ≡ 0. Finally, to see that it satisfies (4), recall that T1 is a basis of Rm.

Thus, after GSO, we arrive at T̃ =

(
T̃1 0

0 In

)
and, in consequence, have

∥∥∥T̃∥∥∥ =
∥∥∥T̃1

∥∥∥ ≤ L̃. ut

Notice that essentially the same procedure can be used to compute an orthogonal A such
that ABt ≡ 0 without a trapdoor for Λ⊥q (A). Just sample a uniformly random matrix A1 in
the first step and omit all subsequent steps that involve the trapdoor T1.

In our security proofs, we will require that a pair (A,TA,B,TB) does not reveal in which
order they were generated by OrthoSamp as stated by the following proposition. The proof is
given in Appendix A.

Proposition 2. Let X1 = (A,TA,B,TB) and X2 = (C,TC,D,TD) be random variables
where
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(B1,TB1)← GPVGen(1n)
B2 ←$ (Zn×nq )∗

TB ← ExtBasis(B1,TB1 ,B2)
(A,TA)← OrthoSamp(B)

and

(C1,TC1)← GPVGen(1n)
C2 ←$ (Zn×nq )∗

TC ← ExtBasis(C1,TC1 ,C2)
(D,TD)← OrthoSamp(C) .

Then, X1 and X2 are statistically indistinguishable.

Observe that we have applied a simplification to the above proposition, where we choose
B2 and C2 directly from the set of invertible matrices. Whenever the proposition is applied in
our schemes, this property can be easily ensured by repeating the sampling procedure a small
number of times. For our parameters, a good approximation of the ratio

∣∣(Zn×nq )∗
∣∣ / ∣∣Zn×nq

∣∣ is

e−1/(q−1) and a lower bound is (1−1/q)n. Since the choice of q is mainly governed by the worst-
case to average-case reduction for SIS, demanding that q � ν for SIS(n,m, q, ν), it will exceed
η
√
m+ n = Ω(n1.5 log1.5(n)) in all our schemes. Hence, the fraction of invertible matrices over

Zn×nq is very close to 1.

All in all, our method differs from the corresponding lemma of [GKV10] in that we always
use GPVGen in dimension m instead of sampling a trapdoor in dimension m+n (as in [GKV10])
directly. Instead, we explicitly control how the trapdoor is extended to the super lattice. Hence,
we have more control over the “shape” of the (m+n)-dimensional input trapdoor to OrthoSamp.

Our sampling algorithm differs from that of [GKV10] in that there, the trapdoor T is con-
structed via the basis randomizer RandBasis of Cash et al. [CHKP10]. It entails extending T1

to a basis for Λ⊥q (A), sampling (via GPVInvert) a set of Ω((m+ n)2) short vectors from the lat-

tice Λ⊥q (A), a computation of the Hermite Normal Form, and the ToBasis algorithm of [MG02,
Lemma 7.1]. Here, we simply append an easily computable matrix V to T1, which has two
advantages. First, our method with complexity Õ(nm2) is more efficient than [GKV10], where
the complexity is dominated by Ω̃((m+n)4) for sampling (m+n)2 lattice vectors using [Pei10].

Second, the quality of the trapdoor in [GKV10] is
∥∥∥T̃∥∥∥ = Ω(

√
m+ nL̃) because GPVInvert (in

dimension m+n) outputs vectors of length η
√
m+ n = Ω̃(

√
m+ nL̃). We have

∥∥∥T̃∥∥∥ = L̃, which

allows tighter security proofs w.r.t. the SIS problem. However, we do not obtain a nice bound
on ‖T‖, which does not matter for most applications because they apply Babai’s Nearest Plane

algorithm [Bab86] or variants thereof [GPV08,Kle00], which only rely on
∥∥∥T̃∥∥∥ being small.

Efficient Sampling with Orthogonal Trapdoors. We apply a slight, well-known improvement to
GPVInvert whenever we apply it in dimension m+n, i.e., whenever we call GPVInvert(A,T, t, η)
for (A,T) being output by OrthoSamp. Instead of sampling directly using T, we use the
upper-left part T1 of T and the following algorithm: 1. Sample x2 ∼ DZn,η; 2. Call x1 ←
GPVInvert(A1,T1, t−A2x2, η); 3. Output x1‖x2. The result has norm at most η

√
m+ n.

4.1.2 Verifiable Encryption of GPV Signatures. As mentioned in the construction
sketch, we will “encrypt” GPV signatures with a variant of the “dual” encryption scheme [GPV08].
To this end, we define the following family of one-way trapdoor functions based on the LWE prob-
lem. For ease of exposition, we will slightly abuse the terms encryption for this trapdoor one-way
function and ciphertext for an image under this trapdoor in the subsequent sections. Fix a trun-
cated error distribution Ψ over Zm with support DΨ . Other parameters are the same as for GPV
signatures.

– Keys are generated using GPVGen(1n), yielding a public key B and corresponding trapdoor
S.

– The one-way function associated to B is gB : Znq × Zm → Zmq : (s, e) 7→ Bts + e mod q.

– LWEInvert(B,S, τ ) uses S to find a vector Bts′ that is close to τ . Then, it computes e′ ←
τ −Bts′ and returns (s′, e′).
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Note that we modified LWEInvert() as to output (s′, e′) instead of just s′ as defined by Peik-
ert [Pei09]. We will use Ψ =

∑`
i=1DZm,η = DZm,

√
`η and DΨ = {v ∈ Zm : ‖v‖2 ≤ η

√
m}.

Correctness follows from [Pei09] with q(n) ≥ L̃2ρ2(m), security as a one-way function follows
from [Reg09,Pei09,GKV10].

Theorem 2 ([GKV10]). The family is one-way if gB(s, e) is indistinguishable from uniform
for s ←$ Znq and e ∼ Ψ . It is hard to distinguish from uniform for Ψ if decision LWE is hard
with the standard noise distribution Ψm√

`η/(q
√
2)

.

Also note that if matrices B,A,S are generated via the GPVGen and OrthoSamp and σ is
a GPV signature such that Aσ ≡ H(M), then the “encrypted” signature τ ← Bts + σ mod q
can still be verified by checking that Aτ ≡ H(M). However, we need to ensure that the “noise”
σ is small, which is why we require the following witness-indistinguishable proof of membership
(WIPoM) system for bounded-distance decodeability (BDD).

4.1.3 Efficient Proofs for Lattice Problems. As mentioned in the construction sketch,
we need two non-interactive proofs for our scheme: a proof that at least one of a number of
ciphertexts encrypts a short vector, and a proof of knowledge of x such that Ax ≡ y.

WIPoM for BDD. We use a variant LBDD(γ, β) := {LYESBDD(γ, β),LNOBDD(γ, β)} of the γ-GapCVP
language [Reg10] for lattices Λq(B). The “YES” and “NO” instances for words (B, τ ) ∈ Zn×mq ×
Zmq are defined as:

LYESBDD(γ, β) := {(B, τ )|∃s ∈ Znq :
∥∥τ −Bts mod q

∥∥
2
≤ β}

and LNOBDD(γ, β) := {(B, τ )|∀s ∈ Znq :
∥∥τ −Bts mod q

∥∥
2
> γβ}.

The norms above are computed by taking the absolute smallest representative modulo q of the
coordinates, i.e., integers in the interval [1−q2 , q−12 ]. Micciancio and Vadhan [MV03] proposed a
statistically zero-knowledge proof of membership (PBDD,VBDD) with one-bit challenges, together
with a simulator SBDD that on input B, τ produces a transcript (cmt , ch, rsp). The k-bit par-
allelized proof system (PpBDD,VpBDD) is still statistical honest-verifier zero-knowledge, as the
simulator SpBDD can generate n conversations using SBDD and output the concatenation of all

transcripts. The corresponding proof of membership requires Õ(n) bits of communication for all
γ = Ω(

√
n), using k = ω(log(n)) for a negligible soundness error [MV03].

Using standard techniques [CDS94,MV03,SCPY08], one can efficiently convert (PpBDD,VpBDD)
into a sound WIPoM (P∨-pBDD,V∨-pBDD) for the OR-combination of such statements:

LYES∨-BDD(γ, β, umax) := {((B, τ v))umax
v=1 |∃v ∈ [umax] ∃sv ∈ Znq :

∥∥τ v −Btsv
∥∥
2
≤ β}.

The “NO” instance is defined analogously. The resulting prover P∨-pBDD generates simulated
transcripts by running SpBDD(B, τ v) for all v 6= u and runs the real prover PpBDD((B, τu), su)
to obtain the transcript for user u, using as a challenge the XOR of the given challenge of the
P∨-pBDD proof and the simulated challenges for v 6= u. This proof system is also statistical
honest-verifier zero-knowledge since the simulator S∨-pBDD can generate correctly distributed
conversation transcripts by generating umax transcripts using SpBDD(B, τ v) and setting the main
challenge to be the XOR of the challenges in the generated transcripts. We will use the non-
interactive variant of the proof system using the Fiat-Shamir transformation [FS86] where the
challenge ch∨ is generated through a random oracle.

Signatures from ISIS. In addition, our constructions will require a signature scheme based
on a generalized version of the witness-indistinguishable identification scheme due to Lyuba-
shevsky [Lyu08a] that we recall and generalize in Appendix C. The main difference to [Lyu08a]
is that we require an entirely different distribution of secret keys to make the scheme applicable
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in our context. To be more precise, the format of these keys plays a crucial role in ensuring
anonymity.

The secret key is a short vector x ∼ DZm+n,η, while the public key consists of a matrix

A←$ Zn×(m+n) and the vector y← Ax mod q. It follows a typical three-move structure where
the prover first generates a commitment and internal state (cmt ISIS, st) ←$ CommISIS(A) and
sends cmt ISIS to the verifier. The verifier then chooses and sends back a challenge ch ISIS ←$ {0, 1}t,
upon which the prover sends the response rspISIS ←$ RespISIS(x, st , ch ISIS). The verifier accepts iff
VerifyISIS(A,y, cmt ISIS, ch ISIS, rspISIS) = 1. The protocol has a non-zero completeness error, i.e.,
probability of rejecting an honest prover, of at most 2−t/14, which is negligible for t = ω(log(n)).

The identification scheme has been shown statistically witness-indistinguishable and secure
under active attack assuming that the ISIS problem related to A,y is hard [Lyu08a, Theo-
rem 13]. The latter property is proved through a rewinding argument that from two valid tran-
scripts (cmt ISIS, ch ISIS, rspISIS), (cmt ISIS, ch ′ISIS, rsp′ISIS) extracts a vector x′ ← ExtISIS(cmt ISIS,

ch ISIS, rspISIS, ch ′ISIS, rsp′ISIS) such that Ax′ ≡ y and ‖x′‖2 ≤ Õ(n1.5).

We will turn the identification scheme into a signature scheme using the Fiat-Shamir trans-
formation. Note that the non-zero completeness error is less of an issue for signatures, as the
signer can always generate a new signature in the unlikely event that an invalid signature is
generated.

4.1.4 Single-Signer Aggregate Signatures. To make the token length logarithmic4 instead
of linear the number of attributes, we observe that GPV signatures support a restricted form of
aggregation [BGLS03] where up to `max signatures by the same signer can be compressed to the
size of a single signature. Namely, given ` ≤ `max signatures (σi)

`
i=1, the aggregate α←

∑`
i=1 σi

can be verified by checking that ` ≤ `max, that 0 < ‖α‖2 ≤ `η
√
m, and that Aα ≡

∑`
i=1H(Mi).

Because of the similarity in structure between GPV signatures and the above single-signer
aggregate scheme, the latter inherits the mechanisms to verifiably encrypt aggregate signatures
from Section 4.1.2. A more detailed description and a proof of the following theorem can be
found in Appendix B.

Theorem 3. The above single-signer aggregate signature scheme is existentially unforgeable in
the random oracle model if the SIS(n,m, q, 2`maxη

√
m) problem is hard.

4.2 Scheme and Security

In the following, we describe an anonymous attribute token scheme AAT–R = (IKeyGen, Issue,
GenToken,VToken) with security parameter n based on hard lattice problems. The scheme uses
random oracles H : {0, 1}∗ → Zm+n

q , F : {0, 1}∗ → {0, 1}k, and G : {0, 1}∗ → {0, 1}t, as well as a

uniformly distributed common reference string B ∈ Zn×(m+n)
q that is a valid input to OrthoSamp.

MKeyGen(1n, umax): The manager runs (A,T)← OrthoSamp(B) and sets mpk ← A and msk ←
(A,T).

Issue(msk , u, (ai)
`
i=1): For all i ∈ [`], the manager computes σu,i ← GPVInvert(A,T,H(u‖i‖ai), η)

and returns cred = (u, (σu,i)
`
i=1).

VCred(mpk , cred , (ai)
`
i=1): The user parses cred = (u, (σi)

`
i=1) and outputs 1 iff Aσu,i ≡ H(u‖i‖ai)

and ‖σu,i‖2 ≤ η
√
m+ n for all i ∈ [`].

GenToken(mpk , cred , (ai)
`
i=1 , R,M): Let cred = (u, (σu,i)

`
i=1). The user first chooses a random

x ∼ DZm+n,η, computes y ← Ax mod q, and creates a signature (ch ISIS, rspISIS) by running
(cmt ISIS, st) ←$ CommISIS(A), setting ch ISIS ← G(y‖cmt ISIS‖M), and computing rspISIS ←
RespISIS(x, st , ch ISIS). In the unlikely event that VerifyISIS(A,y, cmt ISIS, ch ISIS, rspISIS) = 0,

4 While an aggregate signature may seem constant in length, the security parameter actually needs to grow
logarithmically in `max for security.
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she simply repeats these steps.
For all v ∈ [umax] \ {u}, she picks a uniformly random α̃v such that Aα̃v ≡

∑
i∈R H(v‖i‖ai)

using Gauss elimination, chooses sv ←$ Znq and computes τ v ← Btsv + α̃v + x mod q. For
her own index u, she chooses su ←$ Znq and computes τu ← Btsu+αu+x mod q, where αu ←∑

i∈R σu,i. She generates a non-interactive proof (cmt∨, rsp∨)← P∨-pBDD(((B, τ v))
umax
v=1 , u, su)

using as challenge ch∨ = F(B‖ (τ v)
umax
v=1 ‖cmt∨‖ (ai)

`
i=1 ‖R‖M). Finally, the resulting token

becomes τ ← (τ 1, . . . , τumax ,y, cmt ISIS, rspISIS, cmt∨, rsp∨).
VToken(mpk , τ, R, (ai)i∈R,M): The verifier accepts a token if VerifyISIS(A,y, cmt ISIS,G(y‖cmt ISIS‖

M), rspISIS) = 1, if Aτ v ≡
∑

i∈R H(v‖i‖ai) + y for all v ∈ [umax], and if V∨-pBDD accepts the
proof (cmt∨, rsp∨) for statement ((B, τ v))

umax
v=1 and challenge ch∨ = F(B‖ (τ v)

umax
v=1 ‖cmt∨‖

(ai)
`
i=1 ‖R‖M). Otherwise, the verifier rejects the token.

Security statements and proof sketches are provided below, full proofs can be found in Ap-
pendix D and E.

Theorem 4. The above anonymous attribute token scheme is anonymous in the random oracle
model if LWE is hard for Ψ = DZm+n,η.

Proof (sketch). Using the hardness of the decision LWE problem and the statistical zero-knowledge
property of the proof system for BDD, we show that the adversary’s view is independent of the
coin flip b ←$ {0, 1} in the experiment. We achieve this in a series of indistinguishable games,
with the first game being the anonymity experiment for b = 0 and the last one being the same
experiment with b = 1. The overall strategy is as follows. We generate all keys honestly and pass
them to adversary, who responds with two user indices u0, u1 ∈ [umax], credentials credu0 , credu1 ,
and requests a token for ub. Now, instead of using just the short vectors in credu0 to generate
and return a token, we modify the experiment to eventually use credu0 and credu1 to create a
token with two vectors that are close the Λq(B).

The assumptions are used in the following way. When replacing the vector τu1 ← Btsu1 +
x + α̃u1 mod q (far from Λq(B)) with a vector τu1 ← Btsu1 + x + αu1 mod q (close to Λq(B)),
the underlying argument uses the decision LWE assumption to establish computational indis-
tinguishability. Then, when switching from using a witness for u0 to using a witness for u1, we
exploit the statistical witness-indistinguishability of the proof system for BDD in Λq(B).

Theorem 5. The above anonymous attribute token scheme is unforgeable in the random oracle
model if SIS(n,m+ n, q, (2`max + 1)η

√
m+ n+ Õ(n1.5)) is hard and the decision LWE problem

with noise distribution Ψ is hard.

Proof (sketch). We simulate the issuing oracle without knowing a trapdoor for Λ⊥q (A) in the
standard way, i.e., by generating random short GPV signatures and programming the random
oracle H. Rather than generating tokens based on these signatures, we compute long vectors
that satisfy the verification equation; the tokens thus obtained are indistinguishable from tokens
generated by short vectors if the decision LWE problem is hard. We simulate the BDD proof
without a witness using the simulator S∨-pBDD and by programming the random oracle F. As a
consequence, the adversary’s view is independent of the stored GPV signatures of uncorrupted
users.

To use the forged token τ ∗ to solve the SIS problem, we change the way the manager’s keys
are generated by taking A from the SIS problem instance, generating (B,S)← OrthoSamp(A),
and programming the common reference string that defines B. The matrix A is an admissible
input to OrthoSamp with high probability and the argument only requires a non-negligible
fraction of matrices A to work. By Proposition 2, this change in how keys are generated does
not affect the adversary’s view. Using B, we can “decrypt” the vectors τ ∗v included in τ ∗ and,
by the soundness of V∨-pBDD, we can recover a user index u∗ and a short vector ρ such that
Aρ ≡

∑
i∈R∗ H(u∗‖i‖a∗i ) + y∗. Then, we use the knowledge extractor for (cmt∗ISIS, rsp∗ISIS) in
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τ ∗ to extract a short vector x′ such that matAx′ ≡ y∗. The vector α′ ← ρ − x′ is therefore
also short and a solution to Aα′ ≡

∑
i∈R∗ H(u∗‖i‖a∗i ). The simulator internally knows a second

vector α satisfying the same conditions, namely the sum of the stored GPV signatures, which
with overwhelming probability is different from α′ since the adversary’s view is independent of
the stored signatures. Therefore, α−α′ is a short vector for Λ⊥q (A).

5 An Anonymous Attribute Token Scheme with Revocation

To add opening functionality to the AAT–R scheme of the previous section, we generate the
matrix B with an embedded trapdoor S using OrthoSamp, as done in [GKV10]. To achieve full
anonymity, however, we need to be able to respond to opening queries. For this purpose, we
borrow techniques from Rosen and Segev [RS09] and Peikert [Pei09] to obtain CCA-security for
the LWE encryption scheme by using “correlated” ciphertexts. One problem is that the verifier
needs a way to check that the included ciphertexts are valid, i.e., correctly correlated, without
having the trapdoor S. We solve this problem by a clever use of the P∨-pBDD proof system so that
it simultaneously proves that a ciphertext contains a short vector and is correctly correlated.

5.1 Cryptographic Ingredients

Correlated trapdoor one-way functions. Following Rosen and Segev [RS09] and Peikert [Pei09],
we define the following family of correlated trapdoor one-way functions CTLWE with parameters
n,m, κ ∈ N.

Key generation: The algorithm CTGen(1n, 1m, 1κ) generates (B0,1,S0,1)← GPVGen(1n), chooses

a random matrix B0,2 ←$ Zn×nq , and sets B0 = B0,1‖B0,2 and S0 =

(
S0,1 V

0 In

)
such that

B0,1 V ≡ −B0,2. It also generates random matrices Bi ←$ Zn×(m+n)
q for i = 1, . . . , κ. The

public key is (B0, . . . ,Bκ), the corresponding trapdoor is S0.

Evaluation: The one-way function associated to (B0, . . . ,Bκ) is g(B0,...,Bκ) : Znq×(Zm+n
q )κ+1 →

(Zm+n
q )κ+1 : (s, e0, . . . , eκ) 7→ (Bt

0s + e0 mod q, . . . ,Bt
κs + eκ mod q).

Inversion: Algorithm CTInvert((B0, . . . ,Bκ),S0, (b0, . . . ,bκ)) runs (s′, e′0) ← LWEInvert(B0,
S0,b0) and computes e′i ← bi − Bt

is
′ mod q for i = 1, . . . , κ. If ‖e′i‖2 ≤ η

√
m for all

i ∈ {0, . . . , κ} then it returns (s′, e′0, . . . , e
′
κ), else it returns ⊥. The norm of e′i is computed

in a natural way by first selecting the absolute smallest representative first.

If the above function family is evaluated on uniformly random s ←$ Zn and ei ∼ Ψ , then
g(B0,...,Bκ)(s, e0, . . . , eκ) is indistinguishable from random if LWE is hard for Ψ [RS09,Pei09].

One-time signatures. A one-time signature scheme OT S is a triple of algorithms (OTKeygen,
OTSign,OTVerify) where OTKeygen(1n) outputs a verification key otvk ∈ {0, 1}κ and a signing
key otsk ; algorithm OTSign(otsk ,M) outputs a signature otsig , and OTVerify(otvk ,M, otsig)
outputs 1 or 0 indicating whether the signature is valid. The security notion of strong existential
unforgeability under one-time chosen-message attack requires that no adversary, on input otvk
and after a single signature query M yielding otsig ←$ OTSign(otsk ,M), can output M∗, otsig∗

such that OTVerify(otvk ,M∗, otsig∗) = 1 and (M∗, otsig∗) 6= (M, otsig).

5.2 Scheme and Security

We now describe fully anonymous AAT+R scheme with the same parameters n, umax, t, m
as the AAT–R scheme from Section 4.2, plus the signature length κ. The scheme uses random
oracles H : {0, 1}∗ → Zm+n

q , F : {0, 1}∗ → {0, 1}k and G : {0, 1}∗ → {0, 1}t.
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MKeyGen(1n, umax): The manager runs CTGen(1n, 1m, 1κ) to generate matrices ((B0,B1,0 . . . ,

Bκ,0),S0) and generates κ additional random matrices B1,1, . . . ,Bκ,1 ←$ Z
n×(m+n)
q . He also

runs (A,T)← OrthoSamp(B0). The public key is mpk ← (A,B0,B1,0,B1,1, . . . ,Bκ,0,Bκ,1),
the secret key is msk ← (T,S0,mpk). If B0 is not accepted by OrthoSamp, it is re-sampled.

Issue(msk , u, (ai)
`
i=1): For all i ∈ [`], the manager computes σu,i ← GPVInvert(A,T,H(u‖i‖ai), η)

and outputs cred = (u, (σu,i)
`
i=1).

GenToken(mpk , cred , (ai)
`
i=1 , R,M): Let cred = (u, (σu,i)

`
i=1). The user u proceeds as follows:

1. She chooses x0 ∼ DZm+n,η, computes y0 ← Ax0 mod q, and creates a signature (cmt ISIS,
rspISIS) using ch ISIS = G(y0‖cmt ISIS‖M) as the challenge.

2. She computes ρu ←
∑

i∈R σu,i + x0 mod q, chooses su ←$ Znq and computes τu,0 ←
Bt

0su + ρu mod q.

3. For all v ∈ [umax] \ {u}, she computes α̃v such that Aα̃v ≡
∑

i∈R H(v‖i‖ai) using
Gauss elimination, computes ρv ← α̃v + x0 mod q, chooses sv ←$ Znq and computes
τ v,0 ← Bt

0sv + ρv mod q.

4. She generates a signature key pair (otvk , otsk)← OTKeygen(1n). Let otvk = otvk1‖ . . . ‖
otvkκ.

5. For all v ∈ [umax] and i ∈ [κ] she chooses xv,i ∼ DZm+n,η and computes τ v,i ← Bt
i,otvk i

sv+
xv,i mod q.

6. Let Botvk = [B0‖B1,otvk1‖ . . . ‖Bκ,otvkκ ] ∈ Zn×(κ+1)(m+n)
q . For all v ∈ [umax] let xv = [ρv,

xv,1, . . . ,xv,κ] ∈ Z(κ+1)(m+n)
q and τ v = [τ v,0, . . . , τ v,κ] ∈ Z(κ+1)(m+n)

q . Then for all v ∈
[umax] we have that τ v ≡ Bt

otvksv + xv, and for user u we have that ‖xu‖2 ≤ (#R +
κ+ 1)η

√
m+ n. The signer can therefore create a non-interactive proof (cmt∨, rsp∨)←

P∨-pBDD(((Botvk , τ v))
umax
v=1 , u, su) using ch∨ = F(Botvk‖ (τ v)

umax
v=1 ‖cmt∨‖ (ai)

`
i=1 ‖R‖M)

as a challenge to simultaneously prove that one of the vectors τ v encrypts a short vector
αv and that all ciphertexts τ v are well-formed, i.e., that all components τ v,i are underlain
by the same vector sv.

7. Finally, the signer generates a one-time signature otsig ← OTSign(otsk , (τ 1, . . . , τumax ,y0,
cmt ISIS, rspISIS, cmt∨, rsp∨)).

The token is the tuple τ ← (τ 1, . . . , τumax ,y0, cmt ISIS, rspISIS, cmt∨, rsp∨, otvk , otsig).

VToken(mpk , τ, R, (ai)i∈R,M): The verifier checks that VerifyISIS(A,y0, cmt ISIS,G(y0‖cmt ISIS‖M),
rspISIS) = 1, that Aτ v,0 ≡

∑
i∈R H(v‖i‖ai)+y0 for all v ∈ [umax], that OTVerify(otvk , (τ 1, . . . ,

τumax ,y0, cmt ISIS, rspISIS, cmt∨, rsp∨), otsig) = 1, and that V∨-pBDD accepts the proof (cmt∨,

rsp∨) for statement (Botvk , τ v)
umax
v=1 and challenge ch∨ = F(Botvk‖ (τ v)

umax
v=1 ‖cmt∨‖ (ai)

`
i=1 ‖

R‖M). He accepts the token if all of these conditions hold, otherwise he rejects it.

Open(msk , τ, R, (ai)i∈R,M): If VToken(mpk , τ, R, (ai)i∈R,M) = 0, then the manager returns ⊥.
Otherwise, for each v ∈ [umax], the opener computes (s′v,ρ

′
v,x
′
v,1, . . . ,x

′
v,κ) ← CTInvert(

(B0,B1,otvk1 , . . . ,Bκ,otvkκ),S0, (τ v,0, . . . , τ v,κ)). It returns the first v where CTInvert does
not return ⊥ and ρ′v ≤ (#R+ 1)η

√
m+ n, or it returns ⊥ if no such v exists.

Theorem 6. The above AAT+R scheme is anonymous in the random oracle model if LWE is
hard for Ψ = DZm+n,η and if OT S is existentially unforgeable under one-time chosen-message
attack.

Proof (sketch). In the proof, we combine ideas from the security proof of [Pei09] and Theorem 4,
so that we can answer opening queries adaptively, without losing anonymity for all users. The
technique essentially uses the one-time signature scheme to reject mal-formed or “recycled”
tokens to the opener. Furthermore, it allows inserting a challenge from the LWE problem into
one of the encryption matrices Bi,j and still be able decrypt via a trapdoor for any one of the
other lattices. This makes the proof somewhat more involved than for the AAT–R scheme in
Theorem 4; we refer to Appendix F for details. ut
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Theorem 7. The above AAT+R scheme is traceable in the random oracle model if SIS(n,m+
n, q, (2`max+1)η

√
m+ n+Õ(n1.5)) is hard and the decision LWE problem with noise distribution

Ψ is hard.

Proof (Sketch). The proof idea is largely the same as for the unforgeability of the AAT–R
scheme (Theorem 5), i.e., the simulator reveals its internally generated GPV signatures for issue
queries, but uses “fake” signatures and simulated BDD proofs to respond to token generation
queries. However, this is complicated by the fact that responses to the opening oracle have to be
consistent with “recycled” BDD proofs and honest for all other inputs. We refer to Appendix G
for the full proof. ut

6 Extensions

Achieving Non-Frameability. For our AAT+R scheme, the group manager needs to be trusted
not to frame users by generating tokens on their behalf and falsely hold the users responsible for
the tokens. Many group signature schemes based on classical assumptions offer security against
these type of attacks by offering non-frameabilty [BSZ05]. The GKV scheme, as of yet the only
group signature scheme based on post-quantum assumptions, does not offer this property.

In this section we describe how we can obtain non-frameabilty for our construction. Due to
space limitations, we only give a high-level description here. The main idea is to run a AAT+R
and a AAT–R scheme in parallel. The schemes are then merged so that a token is only valid if
it contains a valid token for both schemes. The AAT–R scheme ensures that users cannot be
framed, while the AAT+R scheme ensures that tokens can be opened. We briefly sketch the
necessary changes to merge the two schemes.

Each user u generates its own random matrix Bu and generates its own master key pair
(Au,Tu) for the AAT–R scheme based on Bu. She then issues a credential credu to herself
with a single attribute with a fixed value. The matrices Au,Bu become part of the scheme’s
public key, while credu is the user’s secret key. The manager then generates a public key
(A,B0,B1,0,B1,1, . . . ,Bκ,0,Bκ,1) and corresponding secret key (T,S0) for the AAT+R scheme.

Attribute-containing credentials ˆcredu are issued using the Issue algorithm of the AAT+R
scheme.

The token generation and verification algorithms of both schemes are merged by combining
the WI proofs for credu and ˆcredu to prove that the signer knows short vectors α, α̂ for the
same index u, i.e., the language becomes

LYES∨-BDD(γ, β, umax) :=
{

((Bv, τ v,Botvk , τ̂ v))
umax
v=1 | ∃v ∈ [umax] ∃(sv, ŝv) ∈ Znq × Znq :∥∥τ v −Bt

vsv
∥∥
2
≤ β ∧

∥∥∥τ̂ v − B̂t
otvk ŝv

∥∥∥
2
≤ (#R+ 1)β

}
.

Results for Group Signatures. While our goal was to construct anonymous attribute token
schemes, our results directly imply better lattice-based group signature schemes. As mentioned
earlier, a group signature scheme can be seen as a special case of a AAT+R scheme with a single
attribute with a fixed value. From our AAT+R scheme in Section 5, we obtain the first group
signature scheme based on lattices that enjoys full anonymity, i.e., anonymity that is preserved
under an attack where the adversary has access to an opening oracle. This form of anonymity
is standard for group signatures [BMW03] but not achieved by the GKV scheme. Compared
to their scheme, ours also has the advantage of shorter manager keys: both the public and the
secret key are linear in the number of group members in the GKV scheme, versus constant
in ours. When constructing a group signature scheme from the non-frameable AAT+R scheme
sketched above, one furthermore obtains the first group signature based on lattices offering
non-frameability.
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Results for Ring Signatures. A ring signature scheme [RST01] lets users anonymously sign
messages in name of ad-hoc groups, composed by the user at the time of signing. Lattice-based
ring signatures can be built by letting each user generate matrices Au,Bu,Tu for our AAT–R
scheme, self-issue a credential credu with a single attribute with a fixed value, publish Au,Bu

as a public key and keep credu as a signing key. To create a signature for a group of users
U ⊆ [umax], the user essentially generates a token for our AAT–R scheme using the language

LYES∨-BDD(γ, β, U) := {((Bv, τ v))v∈U |∃v ∈ [umax]∃sv ∈ Znq :
∥∥τ v −Bt

vsv
∥∥
2
≤ β} .

7 Conclusion

We have provided the first full-blown lattice-based group signature scheme. In our scheme, the
anonymity of honest users is also maintained after other users’ signatures are opened and, in
addition, it protect users against framing by a malicious group manager. Moreover, we have
provided the first lattice-based anonymous attribute-based token systems (with and without
anonymity revocation) as a major step towards anonymous credential systems. Extending these
schemes to full-fledged anonymous credential systems seems possible but remains a challenging
open problem.
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A Proof of Proposition 2

Proof (Proposition 2). Split matrices A = A1‖A2, B = B1‖B2, C = C1‖C2, and D = D1‖D2

as above. The matrices A1,B1,B2,C1,C2,D1 are uniformly random by definition or statisti-
cally close to uniform (via GPVGen). Moreover, we know that A2 is distributed statistically close
to uniform subject to A2 = −A1B

t
1(B

−1
2 )t. Equivalently, we can write B2 = −B1A

t
1(A

−1
2 )t,

which is exactly how D2 is constructed with respect to D1 and C. As for the trapdoors, we
argue that the TX1 , for X ∈ {A,B,C,D}, are pairwise independent and follow the same dis-
tribution, namely the output distribution of GPVGen(1n). The extensions TX2 = VX‖In, for
X ∈ {A,B,C,D}, are distributed uniformly random conditioned on the consistency require-
ment X1VX ≡ −X2 in ExtBasis. Hence, both random variables are within negligible statistical
distance. ut

B Proof of Theorem 3

We introduce the notion of a single-signer aggregate signature scheme, which can be seen as a
restricted form of aggregate signatures [BGLS03] where only signatures by the same signer can
be aggregated. The syntax of the key generation algorithm and signing algorithm are the same
as for standard signatures. The aggregation algorithm Agg takes as input a public key pk , a
list of messages M1, . . . ,M`, and a list of signatures σ1, . . . , σ` of these messages under pk , and
outputs an aggregate signature α. The aggregate verification algorithm AVerify, on input pk ,
messages M1, . . . ,M`, and aggregate α, returns 1 if α is deemed valid for M1, . . . ,M` under pk ,
and returns 0 if not.

Existential unforgeability is defined as for aggregate signatures: the adversary, given pk as
input and access to a signing oracle, wins if it can output a forged aggregate α∗ on messages

18



M∗1 , . . . ,M
∗
`∗ so that AVerify(pk , α∗, (M∗1 , . . . ,M

∗
`∗)) = 1 where at least one of the messages M∗i

was never queried to the signing oracle.

The scheme we propose is parameterized with a maximum number `max of signatures per
aggregate. Key generation and signing are as for the GPV scheme, aggregation and verification
are described below.

– Agg(pk , (σi)
`
i=1 , (Mi)

`
i=1) outputs α←

∑`
i=1 σi.

– Verify(pk , (Mi)
`
i=1 ,α) returns 1 if ` ≤ `max, 0 < ‖α‖2 ≤ `η

√
m, and Aα ≡

∑`
i=1H(Mi), or

returns 0 otherwise.

The scheme is correct due to the linearity of A. Let d∞ := ηρ be the upper bound for the
infinity norm of a single signature. Then, an `-aggregate requires m log2(`d

∞) bits of storage, as
opposed to m` log2(d

∞) for ` individual GPV signatures. The proof of the following theorem is
given in Appendix A.

Theorem 8. The above single-signer aggregate signature scheme is existentially unforgeable in
the random oracle model if the SIS(n,m, q, 2`maxη

√
m) problem is hard.

Proof. Given a forger A, we construct an algorithm B that solves the SIS problem as follows.
On input A, B runs A on input A. Algorithm B keeps two associative arrays σ[·] and h[·]. We
assume without loss of generality that A never makes the same random oracle or signing query
twice, and that it always queries H(M) before querying a signature on M or before using M in
its forgery.

When A makes a random oracle query H(M), B chooses σ[M ] ∼ DΛ,η, computes h[M ] ←
Aσ[M ] mod q, and returns h[M ]. When A queries the signing oracle on M , B returns σ[M ].

Eventually, A outputs its forgery α∗ for messages M∗1 , . . . ,M
∗
`∗ such that Aα∗ ≡

∑`∗

i=1 h[M∗i ]

and ‖α∗‖2 ≤ `∗η
√
m. If α =

∑`∗

i=1 σ[M∗i ], then we also have that Aα ≡
∑`∗

i=1 h[M∗i ] and
‖α‖2 ≤ `∗η

√
m. For x = α∗ −α we therefore have that Ax ≡ 0 and by the triangle inequality

that ‖x‖2 ≤ 2`∗η
√
m. Moreover, there is at least one message M∗i that A did not query to the

signing oracle. Therefore, A’s view is independent of σ[M∗i ], so with overwhelming probability
1− 1/2ω(n), α∗ 6= α, and hence x 6= 0, so that x is a valid solution to the SIS problem. ut

C Lyubashevsky’s Identification Scheme

In this section, we present a generalization of Lyubashevsky’s identification scheme [Lyu08a].
Let n,m, q be parameters as per Section 2 and let A be a matrix that is shared by all users.
In the original, the prover possesses a secret key x ∈ {0, 1}m and an associated public key
y ← Ax mod q. Using x she can compute a witness-indistinguishable proof of knowledge of a
short vector x′ ∈ Zm such that Ax′ ≡ y and ‖x′‖2 ≤ 10(m+n)1.5ηρ(m)−2ηρ(m+n)

√
m+ n =

Õ(n1.5).

Our setting is different for two reasons. First, we work over Zm+n instead of over Zm. Second,
our secret keys x are distributed according to DZm+n,η with ‖x‖∞ ≤ ηρ(m) =: d. As a conse-
quence, the entire protocol needs to be modified. However, we stay as close as possible to the
original protocol and leave especially soundness and completeness errors unchanged. Hence, the
proofs of witness-indistinguishability, soundness, and completeness stay conceptually the same.
Refer to Figure 1 for the protocol details.

Notice that we did not attempt to optimize the scheme for efficiency, but it is easy to transfer
it into the ideal lattice setting in analogy to [Lyu09,Rüc10a]. There, the efficiency improvements
of [Lyu08b,Rüc10b] apply.

Now we briefly sketch the analysis of the scheme, focusing on the differences from the original
construction.

19



CommISIS

RespISIS

cmt ISIS-
ch ISIS�
rsp ISIS-

ch ISIS ←$ {0, 1}t
VerifyISIS

CommISIS(A):

For i = 1, . . . , t do
ri ←$ {−5(m+ n), . . . , 5(m+ n)}m+n

si ← Ari mod q
cmt ISIS ← (s1, . . . , st) ; st ← (r1, . . . , rt)

RespISIS(x, st , ch ISIS):

For i = 1, . . . , t do
zi ← ri + ch ISIS,ix
If ch ISIS,i = 1 ∧ ‖zi‖∞ ≤ 5(m+ n)− d
then zi ← ⊥

rsp ISIS ← (z1, . . . , zt)

VerifyISIS(A,y, cmt ISIS, ch ISIS, rsp ISIS):

d← 0
For i = 1, . . . , t do

If ‖zi‖2 ≤ 5d(m+ n)1.5 − d
√
m+ n

∧ Azi ≡ si + ch ISIS,iy
then d← d+ 1

If d ≥ 0.65t then return 1 else return 0 .

Fig. 1. Generalization of Lyubashevsky’s identification scheme with parameter t = ω(logn), public key (A,y),
and secret key x.

Completeness. Observe that for all zi 6= ⊥, we always have Azi ≡ A(ri+ch ISIS,ix) = si+ch ISIS,iy
as desired. For reasonable k = m+n and for (φ,A,B) = (5, d, 5kA), the following simple lemma
from [Rüc10b] establishes Prob[‖zi‖∞ ≥ 0.81] as in [Lyu08a].

Lemma 1. Let k = Ω(n), a,b ∈ Zk with arbitrary a ∈ {v ∈ Zk : ‖v‖∞ ≤ A} and random
b←$ {v ∈ Zk : ‖v‖∞ ≤ B}. Given B ≥ φkA for φ ∈ N>0, we have Prob

b
[‖a + b‖∞ ≤ B −A] >

1
e1/φ
− o(1).

Since all zi are independent, the Chernoff bound gives Prob[d < 0.65t] = Prob[d < (0.81− 0.16)t] ≤
e−2t(0.16

2)<2−t/14 . Hence, for t = ω(log(n)), we achieve a negligible completeness error.

Witness-indistinguishability First of all, we need that for essentially all secret keys x there is
a second (valid) key x′ such that Ax ≡ Ax′. A simple counting argument shows that all but
at most qn secret keys admit such a collision, but there are (2d + 1)m+n possible secret keys.
Hence, the probability of choosing a non-colliding key is 2−Ω(n log(n)).

Let x and x′ be such a pair of colliding keys with public key y. The particular choice the
secret key is statistically hidden by y and the adversary’s challenge ch ISIS = (ch ISIS,i)

t
i=1 is

independent of that choice. The same holds for cmt ISIS = (si)
t
i=; each si statistically hides the

underlying randomness ri. However, the response rspISIS = (zi)
t
i=1 is sensitive to the secret key,

as zi ← ri + ch ISIS,ix.
To show that the protocol is statistically witness-indistinguishable, we need to be able to

switch from x to x′ without changing the output behavior. To this end, we define r′i ← zi −
ch ISIS,ix

′ and z′i ← r′i+ch ISIS,ix
′ for all i. Observe that zi = z′i and that Ar′i ≡ A(zi−ch ISIS,ix

′) ≡
si. Moreover, r′i is chosen from the correct set as ‖r′i‖∞ ≤ 5(m+ n)− d+ d = 5(m+ n).

Soundness. We sketch how a short lattice vector is extracted from a cheating adversary. We
explicitly exploit witness-indistinguishability to (honestly) answer the adversary’s prover queries.
Hence, we pick a secret key x, run the adversary on input (A,y) with y ← Ax mod q, and
answer all queries honestly. During the adversary’s impersonation attempt, we choose a uniformly

random challenge vector ch
(1)
ISIS =

(
ch

(1)
ISIS,i

)t
i=1

and receive the response rsp
(1)
ISIS =

(
z
(1)
i

)t
i=1

.

Then, we rewind the adversary to the challenge phase of the protocol, send a fresh set

ch
(2)
ISIS =

(
ch

(2)
ISIS,i

)t
i=1

uniformly at random, and receive rsp
(2)
ISIS =

(
z
(2)
i

)t
i=1

. We need that there

is an index j such that ch
(1)
ISIS,j 6= ch

(2)
ISIS,j as well as Az

(1)
j ≡ sj+ch

(1)
ISIS,jy and Az

(2)
j ≡ sj+ch

(2)
ISIS,jy.

Let us assume that ch
(1)
ISIS,j = 1 and ch

(2)
ISIS,j = 0. Hence, we can extract x′ ← z

(1)
j − z

(2)
j with

norm at most 10d(m+ n)1.5 − 2d
√
m+ n and Ax′ ≡ 0 as desired.

Let us assume that the adversary has a non-negligible success probability ε. As shown in
[Lyu08a, Theorem 13], such an index j exists with non-negligible probability at least ε2− 2−t/18
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because with probability at least 1 − 2−t/18, the hamming distance of ch
(1)
ISIS and ch

(2)
ISIS is large

enough to guarantee this “overlap” of both executions by the Chernoff bound.

D Full Proof of Theorem 4

We define a sequence of games with Game-1 being the anonymity experiment for b = 0 and
Game-8 being the same experiment with b = 1. We prove the theorem by showing indistin-
guishability between each pair of subsequent games.

In Game-1, the experiment chooses B←$ Z
n×(m+n)
q and generates (A,T)← OrthoSamp(B).

It then runs the adversary A on input mpk = A, msk = (A,T), and common reference
string B. At the end of the first phase, A outputs user indices u0, u1 ∈ [umax], credentials
credu0 , credu1 , attribute values (au0,i)

`0
i=1 , (au1,i)

`1
i=1, set R ⊆ [min(`0, `1)], and message M . If

VCred(mpk , cred b, (aub,i)
`b
i=1) = 1 for b ∈ {0, 1} and au0,i = au1,i for i ∈ R, then the experiment

generates τ∗ ←$ GenToken(mpk , credu0 , (au0,i)
`0
i=1 , R,M) and hands it to A. All random ora-

cle queries, including the internal queries spawned by generating τ∗, are responded with truly
random values. The latter outputs a bit b′ and wins the game if b′ = 0.

In Game-2, the experiment generates τ ∗ by choosing a random vector b ←$ Zm+n
q , setting

y ← Ab mod q, computing x ← GPVInvert(A,T,y, η), computing a random (long) vector
α̃u1 such that Aα̃u1 ≡

∑
i∈R H(u1‖i‖au1,i), and setting τu1 ← b + α̃u1 mod q. Otherwise,

the signature generation proceeds as prescribed by the GenToken algorithm using the vector x
computed earlier, i.e., using the short vectors σu0,i included in credu0 to compute τu0 and using
long vectors α̃v for v ∈ [umax] \ {u0, u1}.

Claim. If the decision LWE problem with noise distribution Ψ is hard, then Game-1 and Game-2
are computationally indistinguishable.

Proof. Given an adversaryA that distinguishes Game-1 from Game-2, we build a distinguisher D
that, on input B,b, decides whether b is a random vector or was generated as b← Bts+e mod q
with s←$ Znq and e ∼ Ψ .

On inputs B,b, algorithm D runs (A,T) ← OrthoSamp(B). It then runs A on inputs
A, (A,T) with common reference string B. When A outputs u0, u1, credu0 , credu1 , (au0,i)

`0
i=1 ,

(au1,i)
`1
i=1, R, and M , algorithm D generates the token τ∗ as done in Game-2 using the vector b.

It is clear that when b is random, then A’s view is identical to Game-2, while if b was generated
as Bts + e, then it is identical to Game-1. ut

Game-3 is identical to Game-2, except that the short vector αu1 ←
∑

i∈R σu1,i taken from
credu1 is used to generate τu1 ← b+αu1 mod q. Token generation remains unchanged otherwise.
Since b is a uniformly random vector, Game-3 is information-theoretically indistinguishable from
Game-2.

In Game-4, the challenge token is generated using a random x ∼ Ψ and y ← Ax mod q.
Moreover, τu1 is computed as τu1 ← Btsu1 + αu1 + x mod q. Notice that now short vectors
σu0 ,σu1 are being used for both of τu0 , τu1, but that cmt∨, rsp∨ are still generated with (u0, su0)
as a witness. Game-4 is computationally indistinguishable from Game-3 under the assumption
that the LWE problem w.r.t. Ψ is hard by a similar argument as made for Game-1 and Game-2.

Game-5 is identical to Game-4, except that the BDD proof is generated as (cmt∨, rsp∨) ←
PBDD((B, τ v)

umax
v=1 , u1, su1). This game hop is indistinguishable by the witness-indistinguishability

of (cmt∨, rsp∨).
The rest of the game hops are essentially the same as the previous ones, but in reverse

order. In Game-6, a random vector b ←$ Zm+n is chosen to set y ← Ab mod q and x ←
GPVInvert(A,T,y, η). Token generation proceeds as in Game-5, but τu0 is generated as τu0 ←
b + αu0 . This game hop is indistinguishable under the decisional LWE assumption. In Game-7,
τu0 is generated using a random long vector α̃u0 instead of the short vector αu0 . The game hop
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is information-theoretically indistinguishable due to the randomness of b. Finally, Game-8 is a
real attack with τ ∗ generated via credu1 . It is indistinguishable from Game-7 under the LWE
assumption by a similar argument as made for Game-1 and Game-2.

E Full Proof of Theorem 5

We show how a traceability adversary A gives rise to a solver B for the SIS problem. We do so by
converting A into an algorithm C that can be rewound in Bellare-Neven’s generalization [BN06]
of Pointcheval-Stern’s forking lemma [PS00]. We then show that the forking algorithm FC can
be converted into the SIS solver B.

Consider algorithm C that on input A ∈ Zn×(m+n)
q and random values g1, . . . , gqG ∈ {0, 1}t

runs (B,S) ← OrthoSamp(A). Algorithm C then runs A on input mpk = A and with common
reference string B, responding to its H(Hi) queries by selecting σi ∼ DZm+n,η and responding
with Aσi mod q, keeping a list (Hi,σi). When responding to A’s i-th query G(Gi), the algorithm
answers with gi while maintaining a list of tuples (i, Gi, gi). Queries F(Fi) are simply responded
to using random strings. (Without loss of generality, we assume that A never makes the same
random oracle query twice.) When A makes an initialization query for u with attributes (ai)

`
i=1,

C simulates queries H(u‖i‖ai), causing the random oracle to be programmed as described above.
When A makes an issue query for user u, it looks up tuples (u‖i‖ai,σu,i) in the list for the

attributes ai with which u was initialized and returns credu = (u, (σu,i)
`
i=1).

WhenA requests a token by user u, C chooses x ∼ DZm+n,η and computes y, cmt ISIS, rspISIS as
in the real GenToken algorithm. It then generates τ v using a long vector α̃v for all v ∈ [umax], i.e.,
it chooses a random α̃v ∈ Zm+n

q such that Aα̃v ≡
∑

iH(v‖i‖ai) using Gauss elimination, chooses
sv ←$ Znq and computes τ v ← Btsv+α̃v+x mod q. It then simulates a proof (cmt∨, ch∨, rsp∨)←
S∨-pBDD((B, τ v)

umax
v=1 ), programs random oracle F so that F(cmt∨) = ch∨, and returns the token

τ ← (τ 1, . . . , τumax ,y, cmt ISIS, rspISIS, cmt∨, rsp∨).

The environment that C provides to A is indistinguishable from a real attack environment.
Namely, mpk and the common reference string are correctly distributed by Proposition 2 and
credentials returned by the issuing oracle are correctly distributed as per the properties of
GPVInvert. The simulated tokens are computationally indistinguishable from the ones generated
by GenToken if the decision LWE problem with noise distribution Ψ is hard by a similar argument
as used in the claim showing indistinguishability between Game-1 and Game-2 in the proof of
Theorem 4 above.

Eventually, A outputs its forgery τ∗ = (τ ∗1, . . . , τ
∗
umax

,y∗, cmt∗ISIS, rsp∗ISIS, cmt∗∨, rsp∗∨) on mes-
sage M∗ and attributes (a∗i )i∈R∗ for R∗. If the token is invalid, C returns (0,⊥). Algorithm C
then computes (s′v,ρ

′
v)← LWEInvert(B,S, τ ∗v) for v ∈ [umax] until it finds an index u∗ for which

‖ρu∗‖2 ≤ (#R∗ + 1)η
√
m+ n. By the soundness of P∨-pBDD, at least one such index must

exist. (Note that the adversary cannot have reused a simulated proof cmt∨, rsp∨ from one of
the responses of the token generation oracle, since the forgery has to be on a different set of
attributes or a different message than any of the requested tokens, and therefore ch∨ as gener-
ated through F will be a different random value.) Next, C looks up the index i∗ of A’s query
G(y∗‖cmt∗ISIS‖M∗) = ch∗ISIS, which, without loss of generality, can be assumed to exist. It also
looks up entries (u∗‖i‖a∗i ,σi) in the list associated to H for i ∈ R∗ and computes α←

∑
i∈R∗ σi.

Algorithm C returns (i∗, (α,ρ′u∗ ,y
∗, cmt∗ISIS, ch∗ISIS, rsp∗ISIS)).

The forking lemma of [BN06] says that if C returns (i∗, τ∗) with i∗ 6= 0 with non-negligible
probability, then the forking algorithm FC will with non-negligible probability return (1, τ (1), τ (2))
based on two executions of C that are identical up to the i∗-th query to G, and where the re-
sponses to the i∗-th query in both executions are different.

Consider now the SIS solving algorithm B that, on input A, runs FC(A) to obtain (1, τ (1), τ (2)).

Let τ (1) = (α(1),ρ(1),y(1), cmt
(1)
ISIS, ch

(1)
ISIS, rsp

(1)
ISIS) and τ (2) = (α(2),ρ(2),y(2), cmt

(2)
ISIS, ch

(2)
ISIS, rsp

(2)
ISIS).

Since the two executions of C are identical up to the i∗-th query to G, the arguments to the i∗-th
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query to G are also identical in both executions, and hence we have that y(1) = y(2) =: y

and cmt
(1)
ISIS = cmt

(2)
ISIS. Since the responses to the i∗-th query are different, we have that

ch
(1)
ISIS 6= ch

(2)
ISIS. By the rewinding argument of Lemma 1 in Appendix C, which is a generalization

of [Lyu08a][Theorem 13], we can extract a vector x′ ← ExtISIS(cmt
(1)
ISIS, ch

(1)
ISIS, rsp

(1)
ISIS, ch

(2)
ISIS, rsp

(2)
ISIS)

such that Ax′ ≡ y and ‖x′‖2 ≤ Õ(n1.5). Algorithm B then computes α(1) ← ρ(1) − x′.
By the definition of a successful adversary, we know that at A’s view must be independent

from at least one of the vectors σu∗,i underlying random oracle queries H(u∗‖i‖a∗i ), either because
user u∗ was never corrupted, or because u∗ was initialized with a different attribute a ′i. Remember
that token generation queries are responded without using σu∗,i, so these do not leak any infor-
mation about σu∗,i. Since also PISIS is witness-indistinguishable, we can apply the same technique
as in the proof of Theorem 3 and conclude that with overwhelming probability z = α(1) − α
is a non-zero vector with Az ≡ 0, where α is an appropriate aggregate of the σu∗,i vectors.

Furthermore, we can conclude that ‖z‖2 ≤ (`max + 1)η
√
m+ n + Õ(n1.5) + `maxη

√
m+ n ≤

(2`max + 1)η sqrtm+ n+ Õ(n1.5).

F Proof of Theorem 6

Proof. We define a sequence of games with the first game being the anonymity experiment for
b = 0 and the last being the same experiment with b = 1. We prove the theorem by showing
indistinguishability between each pair of subsequent games.

Game-1 is the real game with b = 0.
In Game-2, the experiment generates the key pair otvk∗, otsk∗ to be used in the challenge

token τ∗ at the very beginning of the game. If at any point during the game the opening oracle
is queried on a token τ with otvk = otvk∗, then it returns ⊥. It is straightforward to show that
any difference between Game-1 and Game-2 gives rise to a forger for OT S.

In Game-3, the component τ ∗u1 in the challenge token is replaced with a random element

b = [b0, . . . ,bκ] from Z(κ+1)(m+n)
q . The vector y∗0 is set to y∗0 ← Ab0 −

∑
H(u1‖i‖ai), and the

proof (cmt∗ISIS, rsp∗ISIS) is computed using x∗ ← GPVInvert(A,T,y, η). Otherwise, τ∗ is generated
as in the real GenToken algorithm with u1 as a signer.

Claim. If the decision LWE problem with noise distribution Ψ is hard, then Game-2 and Game-3
are computationally indistinguishable.

Proof. Given an adversary A that distinguishes Game-2 from Game-3, we build a distinguisher

D that, on input matrix B ∈ Zn×(κ+1)(m+n)
q and vector b ∈ Z(κ+1)(m+n)

q , decides whether b is a
random vector or was generated as b← Bs + e mod q with s←$ Znq and e ∼ Ψ .

On inputs B,b, algorithm D splits B in κ+ 1 blocks [B0‖ . . . ‖Bκ] of dimension n× (m+n).
It generates (otvk∗, otsk∗)←$ OTKeygen(1n). For all i ∈ [κ] it sets Bi,otvk∗i

← Bi and generates
(Bi,1−otvk∗i ,Si,1−otvk∗i )←$ GPVGen(1n). It also generates (A,T)← OrthoSamp(B0). It then runs
A on input mpk = (A,B0,B1,0,B1,1, . . . ,Bκ,0,Bκ,1). It responds to random oracle queries with
random elements from appropriate domains, and responds to issuing queries via the real Issue
algorithm using trapdoor T.

It responds to opening queries for a token τ as follows. If the token is invalid or otvk =
otvk∗, it returns ⊥. Else, let i be such that otvk i 6= otvk∗i . For each v ∈ [umax] it computes
(sv,xv,i)← LWEInvert(Bi,otvk i ,Si,otvk i , τ v,i). For each v ∈ [umax] and j ∈ [κ]\{i} compute xv,j ←
τ v,j − Bt

j,otvkj
sv mod q and ρv ← τ v,0 − Bt

0sv mod q. If ‖ev,j‖2 ≤ η
√
m+ n for all v ∈ [umax]

and all j ∈ {0, . . . , κ} then it returns the smallest index v for which ‖ρv‖2 ≤ (#R+ 1)η
√
m+ n,

which by the soundness of P∨-pBDD must exist. Else, it returns ⊥.
The challenge token τ∗ is generated as in Game-3 with vector b taking the place of τ ∗u1 .
One can verify that A’s environment is exactly as in Game-2 if b was generated as b ←

Bs+e mod q, and exactly as in Game-3 if it is random. Any adversary A distinguishing between
both games will therefore allow D to win the LWE game. ut
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The rest of the proof is very similar to that of Theorem 4. Namely, in Game-4, τu1,0
is generated as b0 + αu1 mod q for a short vector αu1 . By the randomness of b, Game-4
is information-theoretically indistinguishable from Game-3. In Game-5, τu1 is generated as
τu1,0 ← Bt

0su1 + αu1 + x0 mod q using a random x0 ∼ Ψ and y0 ← Ax0 mod q. It is in-
distinguishable from Game-6 by a similar argument as made in the above claim. In Game-6, su1
is used a witness in the generation of cmt∗∨, rsp∗∨; the witness-indistinguishability of P∨-pBDD

guarantees the indistinguishability of this game hop. In the subsequent games, the same steps
are taken in reverse order as for the previous games, gradually moving to having τ∗ entirely
generated by u1, as done in the proof of Theorem refthm:aat:anonymity. ut

G Proof of Theorem 7

Proof. We show how a traceability adversary A gives rise to a solver B for the SIS problem.
We do so by converting A into an algorithm C that can be rewound in Bellare-Neven’s gener-
alization [BN06] of Pointcheval-Stern’s forking lemma [PS00]. We then show that the forking
algorithm FC can be converted into the SIS solver B.

Consider algorithm C that on input A ∈ Zn×(m+n)
q and random values g1, . . . , gqG ∈ {0, 1}t

runs (B0,S0) ← OrthoSamp(A) and chooses uniform matrices Bi,b for i ∈ [κ] and b ∈ {0, 1}.
Algorithm C then runs A on input mpk = (A,B0,B1,0,B1,1, . . . ,Bκ,0,Bκ,1), responding to its
H(Hi) queries by selecting σi ∼ DZm+n,η and responding with Aσi mod q, keeping a list (Hi,σi).
When responding to A’s i-th query G(Gi), the algorithm answers with gi while maintaining a
list of tuples (i, Gi, gi). Queries F(Fi) are simply responded to using random strings. (Without
loss of generality, we assume that A never makes the same random oracle query twice.) When
A makes an initialization query for u with attributes (ai)

`
i=1, C simulates queries H(u‖i‖ai),

causing the random oracle to be programmed as described above. When A makes an issue query
for user u, it looks up tuples (u‖i‖ai,σu,i) in the list for the attributes ai with which u was

initialized and returns credu = (u, (σu,i)
`
i=1).

When A requests a token by user u, C chooses x0 ∼ DZm+n,η and computes y0, cmt ISIS, rspISIS

as in the real GenToken algorithm. It then generates τ v,0 using a long vector α̃v for all v ∈ [umax],
i.e., it chooses a random α̃v ∈ Zm+n

q such that Aα̃v ≡
∑

iH(v‖i‖ai) using Gauss elimination,
chooses sv ←$ Znq and computes τ v,0 ← Bt

0sv + α̃v + x0 mod q. It also generates (otvk , otsk)←
OTKeygen(1n), chooses xv,i ∼ Ψ and computes τ v,i ← Bt

i,otvk i
sv + xv,i mod q as in the real to-

ken generation algorithm. It then simulates a proof (cmt∨, ch∨, rsp∨) ← S∨-pBDD((B, τ v)
umax
v=1 ),

by programming the random oracle F so that F(Botvk‖ (τ v)
umax
v=1 ‖cmt∨‖ (ai)

`
i=1 ‖R‖M) = ch∨.

Finally, she computes the one-time signature otsig using otsk and returns the token τ ←
(τ 1, . . . , τumax ,y0, cmt ISIS, rspISIS, cmt∨, rsp∨, otvk , otsig).

When A submits an opening query (τ,R, (ai)i∈R,M), algorithm C first verifies τ using
VToken. If it is invalid, C returns ⊥. If the non-interactive proof cmt , rsp in τ was recycled
from a previous response to a token generation request, then C returns the user index u of that
token generation request. Otherwise, it returns the result of the real Open algorithm using S0.

The environment that C provides to A is indistinguishable from a real attack environment.
Namely, A and B0 are correctly distributed by Proposition 2 and credentials returned by the
issuing oracle are correctly distributed as per the properties of GPVInvert. The simulated tokens
are computationally indistinguishable from generated by GenToken if the decision LWE problem
with noise distribution Ψ is hard by a similar argument as used in the claim showing indistin-
guishability between Game-1 and Game-2 in the proof of Theorem 4. The responses to opening
queries are correctly distributed since the only responses that differ from those of the real Open
algorithm are tokens involving a simulated proof (cmt , rsp), for which the user index for which
they were created is returned.

Eventually, A outputs its forgery τ∗ = (τ ∗1, . . . , τ
∗
umax

,y∗0, cmt∗ISIS, rsp∗ISIS, cmt∗∨, rsp∗∨, otvk∗,
otsig∗) on message M∗ and attributes (a∗i )i∈R∗ for R∗. If the token is invalid, C returns (0,⊥).
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If the non-interactive proof cmt∗∨, rsp∗∨ was recycled from a previously generated token, then
this cannot be a valid forgery, since the same vectors τ 1, . . . , τumax will always open to the same
user u, and since the revealed attributes (a∗i )i∈R∗ and the message M∗ must also be the same
as when the token was generated as these are included in the random oracle argument of ch∨ =
F(Botvk‖ (τ v)

umax
v=1 ‖cmt∨‖ (ai)

`
i=1 ‖R‖M), rsp∨). Otherwise, let u∗ = Open(msk , τ∗, R∗, (a∗i )i∈R∗ ,

M∗). Since the token is valid and cmt∨, rsp∨ is not a recycled simulated proof, by the soundness
of P∨-pBDD we have that u∗ 6= ⊥. Algorithm C then computes (s′u∗ ,ρ

′
u∗) ← LWEInvert(B0,S0,

τ ∗u∗,0). Next, C looks up the index i∗ of A’s query G(y∗‖cmt∗ISIS‖M∗) = ch∗ISIS, which, without loss
of generality, can be assumed to exist. It also looks up entries (u∗‖i‖a∗i ,σi) in the list associated
to H for i ∈ R∗ and computes α←

∑
i∈R∗ σi. Algorithm C returns (i∗, (α,ρ′u∗ ,y

∗, cmt∗ISIS, ch∗ISIS,
rsp∗ISIS)).

The forking lemma of [BN06] says that if C returns (i∗, τ∗) with i∗ 6= 0 with non-negligible
probability, then the forking algorithm FC will with non-negligible probability return (1, τ (1), τ (2))
based on two executions of C that are identical up to the i∗-th query to G, and where the re-
sponses to the i∗-th query in both executions are different.

Consider now the SIS solving algorithm B that, on input A, runs FC(A) to obtain (1, τ (1), τ (2)).

Let τ (1) = (α(1),ρ(1),y(1), cmt
(1)
ISIS, ch

(1)
ISIS, rsp

(1)
ISIS) and τ (2) = (α(2),ρ(2),y(2), cmt

(2)
ISIS, ch

(2)
ISIS, rsp

(2)
ISIS).

Since the two executions of C are identical up to the i∗-th query to G, the arguments to the i∗-th
query to G are also identical in both executions, and hence we have that y(1) = y(2) =: y

and cmt
(1)
ISIS = cmt

(2)
ISIS. Since the responses to the i∗-th query are different, we have that

ch
(1)
ISIS 6= ch

(2)
ISIS. By the rewinding argument of Lemma 1 in Appendix C, which is a generalization

of [Lyu08a][Theorem 13], we can extract a vector x′ ← ExtISIS(cmt
(1)
ISIS, ch

(1)
ISIS, rsp

(1)
ISIS, ch

(2)
ISIS, rsp

(2)
ISIS)

such that Ax′ ≡ y and ‖x′‖2 ≤ Õ(n1.5). Algorithm B then computes α′ ← ρ(1) − x′.
By the definition of a successful adversary, we know that at A’s view must be independent

from at least one of the vectors σu∗,i underlying random oracle queries H(u∗‖i‖a∗i ), either because
user u∗ was never corrupted, or because u∗ was initialized with a different attribute a ′i. Remember
that token generation queries are responded without using σu∗,i, so these do not leak any infor-
mation about σu∗,i. Since also PISIS is witness-indistinguishable, we can apply the same technique
as in the proof of Theorem 3 and conclude that with overwhelming probability z = α(1) − α
is a non-zero vector with Az ≡ 0 and ‖z‖2 ≤ (`max + 1)η

√
m+ n + Õ(n1.5) + `maxη

√
m ≤

(2`max + 1)η
√
m+ n+ Õ(n1.5). ut
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